
Aman @ Yiming Yang’s lab seminar, 2/28/2023

Using (Human) Feedback for
Training Large Language Models
OR how ChatGPT is likely trained

1

Precursor: Instruction Tuning
• GPT-3 shows that language models trained on a large amount of data can

generate fluent text ~ mid 2020 

• Good language models — users want to go beyond benchmarks 

• What next?

• Want to train language models that can follow instructions

• Prevent them from generating responses that are toxic and unhelpful

• Want the language models to align with what humans want

2

Training language models to follow instructions
• Want the language models to align with what humans want

• Instruction tuning was an early attempt at this 

• FLAN

• T0

• Lambda

3

Why Instruction Tuning isn’t Enough?
• The models might become better at task understanding — but still nontrivial

to generate a desirable sequence 

• Alignment goes beyond instruction following 

• Real-world behavior is quite different from benchmark datasets 

4

Why human feedback?
• Hard to quantify the requirements or the definition of “good” 

• Task:

• Complete the sentence “I saw the movie last night” to make a positive review

• Completion 1:

• I saw the movie last night and found it to be a thoroughly enjoyable experience.

• Completion 2:

• I saw the movie last night and it was soooo good! Like, really, really good!

• Which response will humans prefer?

• Subjective, but maybe given the goals of the system (general purpose chatbot) + sizable
annotator pool

5

Two Camps
• RL

• Collect some human labels
and fine-tune LMs

• ChatGPT / GPT-3 Families

• Claude by Anthropic

• Supervised

• Collect lots of training data and do
good old supervised learning

• Flan-T5-XXL (best open source
model)

• Large datasets for instruction
tuning:

• T0

• Flan

6

• Action space: vocabulary  

• Policy: language model
 

• Reward: function (e.g., BLEU)
scored per token or for the entire
sequence (typical) 

V

pθ(xi ∣ x0, x1, …, xi−1), xi ∈ V

r

Connection between RL and LM

7

• Action space: vocabulary  

• Policy: language model  

• Reward: function (e.g., BLEU) scored per token or for the entire sequence (typical) 

• In theory, can “fine-tune” given a reward function using any off-the-shelf RL algorithm

• In practice, modern implementations using proximal-policy optimization (PPO)

• Not discussed, consider a black box RL algorithm

• Focus on:

• Human feedback

• Design of reward function

V

pθ(xi ∣ x0, x1, …, xi−1), xi ∈ V

r

pθ r

r

Connection between RL and LM

8

Outline of the talk
• Background 

• RL + Human feedback

• Fine-tuning LMs with Human Feedback

• InstructGPT 

• Recent works that include feedback without RL

• Hindsight-tuning

• Self-correct
9

10

Fine-Tuning Language Models from Human Preferences

• Given a fixed (base) language model, improve its outputs to align better with
some desired goal

• Example, given a partial review, make the completions more positive.

• I saw the movie last night < complete this part >

• < complete this part > : and it was amazing

• < complete this part > : and it was okay

• < complete this part > : and it was the worst

• Summarize an article such that the summary is one preferred by humans.

11

Fine-Tuning Language Models from Human Preferences

• Goal:

• Can we use human feedback to fine-tune models?

• Steps:

• Step 1: Collect human labels

• Step 2: Train a reward model

• Step 3: Fine-tune the language model with the reward model

12

Step 1: Collect Human Labels
• Use an external service (Scale AI)

• Let be the starting language model

• Use to generate 4 outputs (continuations) for each input (context)

•  

• Human raters pick the best one

•

ρ

ρ x

(x, y0, y1, y2, y3)

(x, y0, y1, y2, y3, b), b ∈ [0,1,2,3]

13

Step 2: Train Reward model
• Train a model that learns to rate those completions higher that are also

preferred by humans.

• captures human preferencesr

14

Step 3: Finetuning with RL
• Notation:

• We start with a base model .

• We want to fine-tune using the reward function

• Recall has been trained with human feedback to rate those completions

• Naive approach:

• Use PPO (or any other RL algorithm) to fine-tune

• PPO is concerned with changing to generate sequences that lead to a high

ρ

ρ r

r

ρ

ρ r

15

Step 3: Finetuning with RL
• Naive approach:

• Use PPO (or any other RL algorithm) to fine-tune

• PPO is concerned with changing so that it starts generating sequences with
a higher reward

• In practice:

• Unstable

• Reward Hacking

• PPO is only concerned with changing so that it starts generating sequences
with a higher reward

ρ

ρ

ρ

16

Step 3: Finetuning with RL
Reward Hacking

17

• Complete the reviews so that they have a positive sentiment

• Humans preferred reviews have “amazing”, “great”

• Reward function: score sequences with positive words as positive 

• PPO is only concerned with changing so that it starts generating sequences with a higher reward

• The movie was decent (iteration 0, reward 0)

• The movie had an good storyline (iteration 10, reward 0.75)

• The movie amazing amazing amazing amazing (iteration 100, reward 1.0) 

• Completions degenerate and incoherent 

• Making reward non-hackable:

• was a good language model to begin with

• Can we use guidance from to enforce fluency and topical coherence?

• We don’t want to move too far away from .

ρ

ρ

ρ

ρ

Step 3: Finetuning with RL
• :

• We start with a base model .

• Make a copy of , call it

• We will update , and use to make the reward non-hackable.

π

ρ

ρ π

π ρ

18

Hack Prevention

Reward model

Step 3: Finetuning with RL

19

Maximize reward
Without deviating too much

from the base policy ρ

𝔼y∼π(.∣x) [log
π(y ∣ x)
ρ(y ∣ x] = KL(π, ρ)

Other interpretations

Entropy bonus for π

Fine-Tuning Language Models from Human Preferences
Overview

20

• If the trained policy is quite different, there may be distributional shift 

• Some experiments:

• Reward collect and training happens in online fashion

Summarization
• CNN/Daily Mail and TLDR

• Baselines:

• Zero-shot: prompt a supervised model to generate
summaries

• Supervised: Standard supervised learning (MLE)

• RL-finetuning: proposed approach

• Supervised + RL-finetuning: start RL-finetuning on top of
a supervised model.

• Lead-3: take three lines from the input and copy to the
output

21

Methods

T5 Reward
Model

Article

Gen Summar y1

Gen Summar y2

Article
Extract First

Three
Sentences

Summary T5Article Gen Summar y Loss

Reference Summar y

T5Article Gen Summary

>

Gen Summar y2

Gen Summar y1

Loss

T5 Reward
Model

Article Gen Summar y Loss

LEAD-3 ZERO-SHOT

SUPERVISED

FINE-TUNED Their terminology — different from standard definition of fine-tuning
22

Automated Metrics

23

Human Evaluation

24

Human eval vs. automated eval

Beats reference summaries!

60k fine-tuned online much better in human evaluation!

25

What is really going on?
Self-fulfilling Prophecy + Humans are lazy and excellent at shortcuts

• Human annotators were asked to select the “better” summary

• What is the surefire way of telling better if you are short on time?

• See if content overlaps

• The reward model learns to reward summaries that copy content more

• Consequently the policy learns to copy content

• The same set of humans are then called in to evaluate

• Of course, they will have the same preferences

• Takeaway: Maybe different set of annotators

26

InstructGPT

27

Best known public details of ChatGPT.

InstructGPT
• Applies ideas in the previous paper to the real world 

• Same three steps

• Collect data 

• Train reward function 

• Finetune LM using the reward function 

28

29

Collecting Data and Human Annotations
Step 1.1: collect prompts

• Hired annotators to label instructions and solutions

• Used this data to create a simple “instruction” model

• Released model @ https://platform.openai.com/playground

• Users asked to “play” with the “instruction” model

• Users were told that the models have basic instruction following capabilities

• We created prompts for them

• Collected a large dataset of real world “use cases” or prompts

• What the crowd is really looking for

30

https://platform.openai.com/playground

Collecting Data and Human Annotations
Step 1.2: get labels

• The world was their annotator

• Collected a large dataset of real world “use cases” or prompts

• What the crowd is really looking for

• With this large dataset of prompts (“Explain the moon landing to a 6 year old”)

• Hire expert writers, programmers, etc. to complete the prompts

• Get inputs from the general audience, outputs from experts

31

Collecting Data and Human Annotations
Step 1.2: get labels

• The world was their annotator

• Collected a large dataset of real world “use cases” or prompts

• What the crowd is really looking for

32

Collecting Data and Human Annotations
Step 1.3: train base model

• The world was their annotator

• Collected a large dataset of real world “use cases” or prompts

• What the crowd is really looking for

• With this large dataset of prompts (“Explain the moon landing to a 6 year old”)

• Hire expert writers, programmers, etc. to complete the prompts

• Standard supervised training

• Gives a base model (SFT == davinci-instruct-beta)

33

Training Reward Model
Step 2.1: generate samples

• Deploy SFT model, collect prompts from users

• Generate K outputs per prompt

34

Training Reward Model
Step 2.2: get annotations

• Generate K outputs per prompt

• Get preferences from humans

• For a given prompt, generate K
responses (not pick the best from K)

• Hire human annotators to rank the K-
responses, yielding Choose(K, 2) pairs.

35

Training Reward Model
Step 2.3: train reward model

36

• For a given prompt, generate K responses (not pick the
best from K)

• Hire human annotators to rank the K-responses,
yielding Choose(K, 2) pairs. 

• Train a reward model to rank preferred responses higher

Training Reward Model
Step 2.3: train reward model

37

• Train a reward model to rank preferred responses higher

• Processed in the same batch

• Only K forward passes, one for each option

• Lesser overfitting

Step 3: Finetuning with RL
• Use the same non-hackable reward function

• Use PPO with this objective

38

PPO-ptx: “mix some gradients from pre-training” perform pre-training again on RL model 
 

Avoids “alignment tax”

Regression on publicly available datasets

• There is an alignment tax that needs to be paid by improving models on the
responses that humans actually want

• This is because the datasets are somewhat different

• Fix is to train the RL model with some pre-training data

39

40

Experiments
• Human evaluation:

• Have splits on annotators — get annotations from workers who did not contribute to the reward model

• Evaluation set:

• Prompts given by users that were not included in the training

• GPT3 prompts:

• Prompts submitted to the GPT3 models

• Instruct prompts:

• Prompts submitted to the instruct models

• Evaluation on benchmarks

• Models:

• GPT3 (base model) —> SFT (GPT3 trained on human demonstrations) -> PPO (SFT fine-tuned with a
reward model) -> PPO-ptx (PPO training with training data mixed)

41

Experiments
Results

42

With SFT-175B as the baseline,

PPO-ptx is preferred for 70% of the cases

Set to 50%, doesn’t actually make sense

Experiments
Fine-grained eval

43

Experiments
Publicly available instruction tuning datasets are not sufficient

44

GPT-3 trained on FLAN

Performance on Public Benchmarks

45

Qualitative Results

46

Qualitative Results

47

Creating Prompts Automatically
• Creating prompts/instructions automatically

48

Outline of the talk
• Background 

• RL + Human feedback

• Fine-tuning LMs with Human Feedback

• InstructGPT 

• Recent works that include feedback without RL

• Hindsight-tuning

• Self-correct
49

50

Wisdom of hindsight makes LLMs better
• Wisdom of hindsight: learning from mistakes

• (p, q, o):

• Prompt, query, output

• Answer the following question: what is the capital of Pennsylvania?
Pittsburgh

• The answer is wrong!

• The prompt and the query are not aligned

• But if this is from the training set, you can use hindsight to improve
performance

51

Wisdom of hindsight makes LLMs better
• Answer the following question: what is the capital of Pennsylvania? Pittsburgh

• The answer is wrong!

• The prompt and the query are not aligned

• But if this is from the training set, you can use hindsight to improve
performance

• Add modified instruction to the training set, train again:

• Answer the following question incorrectly: what is the capital of
Pennsylvania? Pittsburgh

• Hindsight Instruction Relabeling (HIR)
52

Wisdom of hindsight makes LLMs better

53

Data
CollectionTraining

HIR

54

HIR
More Tricks

• [(Answer the following question, what is the capital of Pennsylvania?, Harrisburg) + (Answer the
following question incorrectly, what is the capital of Pennsylvania?, Pittsburgh),]

• = exp prob(Pittsburgh | Answer the following question incorrectly, what is
the capital of Pennsylvania?)

• = exp prob(Pittsburgh | Answer the following question, what is the capital of
Pennsylvania?)

•

• Contrastive loss to push down specific outputs for other instructions and avoid generating the same
output for different instructions:

• Encourage associating of instruction - output

• - log P (Pittsburgh | incorrect)

P(Pittsburgh | Incorrect)

P(Pittsburgh |Correct)

−log
P(Pittsburgh | Incorrect)

P(Pittsburgh | Incorrect) + P(Pittsburgh |Correct)

55

56

Results

57 FARL: Only use positive labels

Options for when you cannot hire humans to tell good from bad

58

Key Idea
• Start with a base generator 

• Generate two outputs:

• A and B

• If A is “correct” and B is “wrong”, add A —> B as an example, train corrector

59

Training Self-Correctors
• Initialization

•

• Pairing

•

• Learning

•  

• Exploration

• Include some examples from the current corrector 
60

Inference
• Given some input

• Use generator to sample output

• Apply corrector k times (the output may be right after the first go, there is no
way to know).

61

Experiments
Math Reasoning

• Smaller model as a corrector (GPT-Neo 1.3B)

• Generator:

• Either the same model or GPT-3

•

62

Experiments
Toxicity Reduction
• Given a prompt x, the task is to generate a fluent continuation y while

avoiding offensive content.

• Off-the-shelf GPT-2 Large as the generator, and finetune another GPT-2 Large
as the corrector.

• As the value function, use the Perspective API score, v(y) ∈ [0, 1], which
measures the toxicity of the completed sequence.

63

Experiments
Swapping Generators

• Train corrector using generations from a smaller model

• Use the corrector to improve larger models

64

Outline of the talk
• Background 

• RL + Human feedback

• Fine-tuning LMs with Human Feedback

• InstructGPT 

• Recent works that include feedback without RL

• Hindsight-tuning

• Self-correct
65

Two Camps
• RL

• Collect some human labels
and fine-tune LMs

• ChatGPT / GPT-3 Families

• Claude by Anthropic

• Supervised

• Collect lots of training data and do
good old supervised learning

• Flan-T5-XXL (best open source
model)

• Large datasets for instruction
tuning:

• T0

• Flan

66

Take aways
• RL + Large amounts of hand annotated data key to creating good models

• Another competitor (Claude by Anthropic) also uses PPO

• Growing body of work questioning the need for RL — perhaps our
benchmarks are misguided

• It might be possible to simulate a human for feedback with a good enough
model

67

