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Using (Human) Feedback for 
Training Large Language Models
OR how ChatGPT is likely trained
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Precursor: Instruction Tuning
• GPT-3 shows that language models trained on a large amount of data can 

generate fluent text ~ mid 2020 

• Good language models — users want to go beyond benchmarks 

• What next?


• Want to train language models that can follow instructions 

• Prevent them from generating responses that are toxic and unhelpful


• Want the language models to align with what humans want
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Training language models to follow instructions
• Want the language models to align with what humans want


• Instruction tuning was an early attempt at this 

• FLAN


• T0


• Lambda
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Why Instruction Tuning isn’t Enough?
• The models might become better at task understanding — but still nontrivial 

to generate a desirable sequence 

• Alignment goes beyond instruction following 

• Real-world behavior is quite different from benchmark datasets 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Why human feedback?
• Hard to quantify the requirements or the definition of “good” 

• Task:


• Complete the sentence “I saw the movie last night” to make a positive review


• Completion 1:


• I saw the movie last night and found it to be a thoroughly enjoyable experience.


• Completion 2:


• I saw the movie last night and it was soooo good! Like, really, really good!


• Which response will humans prefer?


• Subjective, but maybe given the goals of the system (general purpose chatbot) + sizable 
annotator pool 
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Two Camps
• RL


• Collect some human labels 
and fine-tune LMs


• ChatGPT / GPT-3 Families


• Claude by Anthropic

• Supervised


• Collect lots of training data and do 
good old supervised learning


• Flan-T5-XXL (best open source 
model)


• Large datasets for instruction 
tuning:


• T0


• Flan
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• Action space: vocabulary  

• Policy: language model 
 

• Reward: function  (e.g., BLEU) 
scored per token or for the entire 
sequence (typical) 

V

pθ(xi ∣ x0, x1, …, xi−1), xi ∈ V

r

Connection between RL and LM
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• Action space: vocabulary  

• Policy: language model  

• Reward: function  (e.g., BLEU) scored per token or for the entire sequence (typical) 

• In theory, can “fine-tune”  given a reward function  using any off-the-shelf RL algorithm


• In practice, modern implementations using proximal-policy optimization (PPO)


• Not discussed, consider a black box RL algorithm


• Focus on:


• Human feedback


• Design of reward function 

V

pθ(xi ∣ x0, x1, …, xi−1), xi ∈ V

r

pθ r

r

Connection between RL and LM
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Outline of the talk
• Background 

• RL + Human feedback


• Fine-tuning LMs with Human Feedback


• InstructGPT 

• Recent works that include feedback without RL


• Hindsight-tuning


• Self-correct
9
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Fine-Tuning Language Models from Human Preferences

• Given a fixed (base) language model, improve its outputs to align better with 
some desired goal


• Example, given a partial review, make the completions more positive.


• I saw the movie last night < complete this part >


• < complete this part > : and it was amazing


• < complete this part > : and it was okay


• < complete this part > : and it was the worst


• Summarize an article such that the summary is one preferred by humans.
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Fine-Tuning Language Models from Human Preferences

• Goal:


• Can we use human feedback to fine-tune models?


• Steps:


• Step 1: Collect human labels


• Step 2: Train a reward model


• Step 3: Fine-tune the language model with the reward model
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Step 1: Collect Human Labels
• Use an external service (Scale AI)


• Let  be the starting language model


• Use  to generate 4 outputs (continuations) for each input (context) 


•  

• Human raters pick the best one


•

ρ

ρ x

(x, y0, y1, y2, y3)

(x, y0, y1, y2, y3, b), b ∈ [0,1,2,3]
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Step 2: Train Reward model
• Train a model that learns to rate those completions higher that are also 

preferred by humans.


•  captures human preferencesr
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Step 3: Finetuning with RL
• Notation: 


• We start with a base model .


• We want to fine-tune  using the reward function 


• Recall  has been trained with human feedback to rate those completions


• Naive approach:


• Use PPO (or any other RL algorithm) to fine-tune 


• PPO is concerned with changing  to generate sequences that lead to a high 

ρ

ρ r

r

ρ

ρ r
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Step 3: Finetuning with RL
• Naive approach:


• Use PPO (or any other RL algorithm) to fine-tune 


• PPO is concerned with changing  so that it starts generating sequences with 
a higher reward


• In practice:


• Unstable


• Reward Hacking


• PPO is only concerned with changing  so that it starts generating sequences 
with a higher reward

ρ

ρ

ρ
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Step 3: Finetuning with RL
Reward Hacking
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• Complete the reviews so that they have a positive sentiment


• Humans preferred reviews have “amazing”, “great”


• Reward function: score sequences with positive words as positive 

• PPO is only concerned with changing  so that it starts generating sequences with a higher reward


• The movie was decent (iteration 0, reward 0) 

• The movie had an good storyline (iteration 10, reward 0.75)


• The movie amazing amazing amazing amazing (iteration 100, reward 1.0) 

• Completions degenerate and incoherent 

• Making reward non-hackable:


•  was a good language model to begin with


• Can we use guidance from  to enforce fluency and topical coherence?


• We don’t want to move too far away from .

ρ

ρ

ρ

ρ



Step 3: Finetuning with RL
• : 


• We start with a base model . 


• Make a copy of , call it 


• We will update , and use  to make the reward non-hackable.

π

ρ

ρ π

π ρ
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Hack Prevention

Reward model



Step 3: Finetuning with RL

19

Maximize reward
Without deviating too much 


from the base policy  ρ

𝔼y∼π(.∣x) [log
π(y ∣ x)
ρ(y ∣ x ] = KL(π, ρ)

Other interpretations

Entropy bonus for π



Fine-Tuning Language Models from Human Preferences
Overview
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• If the trained policy is quite different, there may be distributional shift 

• Some experiments:


• Reward collect and training happens in online fashion




Summarization
• CNN/Daily Mail and TLDR


• Baselines:


• Zero-shot: prompt a supervised model to generate 
summaries


• Supervised: Standard supervised learning (MLE)


• RL-finetuning: proposed approach


• Supervised + RL-finetuning: start RL-finetuning on top of 
a supervised model.


• Lead-3: take three lines from the input and copy to the 
output
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Methods

T5 Reward 
Model

Article

Gen Summar y1

Gen Summar y2

Article
Extract First 

Three 
Sentences

Summary T5Article Gen Summar y Loss

Reference Summar y

T5Article Gen Summary



>


Gen Summar y2

Gen Summar y1

Loss

T5 Reward 
Model

Article Gen Summar y Loss

LEAD-3 ZERO-SHOT

SUPERVISED

FINE-TUNED Their terminology — different from standard definition of fine-tuning
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Automated Metrics
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Human Evaluation
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Human eval vs. automated eval

Beats reference summaries!

60k fine-tuned online much better in human evaluation!
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What is really going on?
Self-fulfilling Prophecy + Humans are lazy and excellent at shortcuts

• Human annotators were asked to select the “better” summary


• What is the surefire way of telling better if you are short on time?


• See if content overlaps


• The reward model learns to reward summaries that copy content more


• Consequently the policy learns to copy content


• The same set of humans are then called in to evaluate


• Of course, they will have the same preferences


• Takeaway: Maybe different set of annotators
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InstructGPT
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Best known public details of ChatGPT.



InstructGPT
• Applies ideas in the previous paper to the real world 

• Same three steps


• Collect data 

• Train reward function 

• Finetune LM using the reward function 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Collecting Data and Human Annotations
Step 1.1: collect prompts

• Hired annotators to label instructions and solutions


• Used this data to create a simple “instruction” model


• Released model @ https://platform.openai.com/playground


• Users asked to “play” with the “instruction” model


• Users were told that the models have basic instruction following capabilities


• We created prompts for them


• Collected a large dataset of real world “use cases” or prompts


• What the crowd is really looking for
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https://platform.openai.com/playground


Collecting Data and Human Annotations
Step 1.2: get labels

• The world was their annotator


• Collected a large dataset of real world “use cases” or prompts


• What the crowd is really looking for


• With this large dataset of prompts (“Explain the moon landing to a 6 year old”)


• Hire expert writers, programmers, etc. to complete the prompts


• Get inputs from the general audience, outputs from experts
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Collecting Data and Human Annotations
Step 1.2: get labels

• The world was their annotator


• Collected a large dataset of real world “use cases” or prompts


• What the crowd is really looking for
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Collecting Data and Human Annotations
Step 1.3: train base model

• The world was their annotator


• Collected a large dataset of real world “use cases” or prompts


• What the crowd is really looking for


• With this large dataset of prompts (“Explain the moon landing to a 6 year old”)


• Hire expert writers, programmers, etc. to complete the prompts


• Standard supervised training


• Gives a base model (SFT == davinci-instruct-beta)

33



Training Reward Model
Step 2.1: generate samples

• Deploy SFT model, collect prompts from users


• Generate K outputs per prompt
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Training Reward Model
Step 2.2: get annotations

• Generate K outputs per prompt


• Get preferences from humans


• For a given prompt, generate K 
responses (not pick the best from K) 


• Hire human annotators to rank the K-
responses, yielding Choose(K, 2) pairs.
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Training Reward Model
Step 2.3: train reward model
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• For a given prompt, generate K responses (not pick the 
best from K) 


• Hire human annotators to rank the K-responses, 
yielding Choose(K, 2) pairs. 

• Train a reward model to rank preferred responses higher



Training Reward Model
Step 2.3: train reward model
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• Train a reward model to rank preferred responses higher


• Processed in the same batch


• Only K forward passes, one for each option


• Lesser overfitting



Step 3: Finetuning with RL
• Use the same non-hackable reward function


• Use PPO with this objective
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PPO-ptx: “mix some gradients from pre-training” perform pre-training again on RL model 
 

Avoids “alignment tax”



Regression on publicly available datasets

• There is an alignment tax that needs to be paid by improving models on the 
responses that humans actually want


• This is because the datasets are somewhat different


• Fix is to train the RL model with some pre-training data
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Experiments
• Human evaluation:


• Have splits on annotators — get annotations from workers who did not contribute to the reward model


• Evaluation set:


• Prompts given by users that were not included in the training


• GPT3 prompts:


• Prompts submitted to the GPT3 models


• Instruct prompts:


• Prompts submitted to the instruct models


• Evaluation on benchmarks


• Models:


• GPT3 (base model) —> SFT (GPT3 trained on human demonstrations) -> PPO (SFT fine-tuned with a 
reward model) -> PPO-ptx (PPO training with training data mixed)
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Experiments
Results
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With SFT-175B as the baseline, 

PPO-ptx is preferred for 70% of the cases

Set to 50%, doesn’t actually make sense



Experiments
Fine-grained eval
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Experiments
Publicly available instruction tuning datasets are not sufficient
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GPT-3 trained on FLAN



Performance on Public Benchmarks
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Qualitative Results
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Qualitative Results
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Creating Prompts Automatically
• Creating prompts/instructions automatically
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Outline of the talk
• Background 

• RL + Human feedback


• Fine-tuning LMs with Human Feedback


• InstructGPT 

• Recent works that include feedback without RL


• Hindsight-tuning


• Self-correct
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Wisdom of hindsight makes LLMs better
• Wisdom of hindsight: learning from mistakes


• (p, q, o):


• Prompt, query, output


• Answer the following question: what is the capital of Pennsylvania? 
Pittsburgh


• The answer is wrong!


• The prompt and the query are not aligned 

• But if this is from the training set, you can use hindsight to improve 
performance

51



Wisdom of hindsight makes LLMs better
• Answer the following question: what is the capital of Pennsylvania? Pittsburgh


• The answer is wrong!


• The prompt and the query are not aligned 

• But if this is from the training set, you can use hindsight to improve 
performance


• Add modified instruction to the training set, train again:


• Answer the following question incorrectly: what is the capital of 
Pennsylvania? Pittsburgh


• Hindsight Instruction Relabeling (HIR)
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Wisdom of hindsight makes LLMs better

53

Data 
CollectionTraining



HIR
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HIR
More Tricks

• [(Answer the following question, what is the capital of Pennsylvania?, Harrisburg) + (Answer the 
following question incorrectly, what is the capital of Pennsylvania?, Pittsburgh),]


•  = exp prob(Pittsburgh | Answer the following question incorrectly, what is 
the capital of Pennsylvania?)


•  = exp prob(Pittsburgh | Answer the following question, what is the capital of 
Pennsylvania?)


• 


• Contrastive loss to push down specific outputs for other instructions and avoid generating the same 
output for different instructions:


• Encourage associating of instruction - output


• - log P (Pittsburgh | incorrect) 

P(Pittsburgh | Incorrect)

P(Pittsburgh |Correct)

−log
P(Pittsburgh | Incorrect)

P(Pittsburgh | Incorrect) + P(Pittsburgh |Correct)
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Results

57 FARL: Only use positive labels



Options for when you cannot hire humans to tell good from bad
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Key Idea
• Start with a base generator 

• Generate two outputs:


• A and B


• If A is “correct” and B is “wrong”, add A —> B as an example, train corrector
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Training Self-Correctors
• Initialization


•  


• Pairing


•  


• Learning


•  

• Exploration


• Include some examples from the current corrector 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Inference 
• Given some input


• Use generator to sample output


• Apply corrector k times (the output may be right after the first go, there is no 
way to know).
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Experiments
Math Reasoning

• Smaller model as a corrector (GPT-Neo 1.3B)


• Generator:


• Either the same model or GPT-3


•
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Experiments
Toxicity Reduction
• Given a prompt x, the task is to generate a fluent continuation y while 

avoiding offensive content.


• Off-the-shelf GPT-2 Large as the generator, and finetune another GPT-2 Large 
as the corrector.


• As the value function, use the Perspective API score, v(y) ∈ [0, 1], which 
measures the toxicity of the completed sequence.
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Experiments
Swapping Generators

• Train corrector using generations from a smaller model


• Use the corrector to improve larger models
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Outline of the talk
• Background 

• RL + Human feedback


• Fine-tuning LMs with Human Feedback


• InstructGPT 

• Recent works that include feedback without RL


• Hindsight-tuning


• Self-correct
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Two Camps
• RL


• Collect some human labels 
and fine-tune LMs


• ChatGPT / GPT-3 Families


• Claude by Anthropic

• Supervised


• Collect lots of training data and do 
good old supervised learning


• Flan-T5-XXL (best open source 
model)


• Large datasets for instruction 
tuning:


• T0


• Flan
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Take aways
• RL + Large amounts of hand annotated data key to creating good models


• Another competitor (Claude by Anthropic) also uses PPO


• Growing body of work questioning the need for RL — perhaps our 
benchmarks are misguided


• It might be possible to simulate a human for feedback with a good enough 
model
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