
Self-Enhancing Text Generation and
Reasoning

Aman Madaan, Ph.D. Candidate at Language Technologies Institute, Carnegie Mellon University
Advised by Prof. Yiming Yang

About Me

● Research Interest: Improving the reasoning capabilities of large language
models

● Currently excited about
● Using inference-time compute for effective and efficient reasoning

● Blending code generation and reasoning

● Before Ph.D.
● Principal Member of Technical Staff @ Oracle

Agenda

● Self-Refine: Improving initial outputs from large language models (LLMs)
through cycles of self-feedback and refinement.

● AutoMix: Combining LLMs of varying costs and capabilities using
context-grounded self-verification.

● How can we develop better AI reasoners?
● The case for inference-time compute.

How can we develop better AI reasoners?

● Current LLM setup: Input Output
● Language models are eager generators

● Difficult solutions rarely come in one attempt
● Hard not to think about the text we generate

● How do we develop AI systems that can do better reasoning?
● Models that can take more time but generate better responses

● More flops
● “System 2” or slow thinking (Kahneman et al.)

→

Kahneman, Daniel. Thinking, fast and slow. macmillan, 2011.

How can we develop better AI reasoners?

● Option 1: Train much larger models (compute) with lots of data (tokens)

● How much compute do we need?
● Engineering complexity, serving

https://dynomight.net/scaling/
https://a16z.com/navigating-the-high-cost-of-ai-compute/

How can we develop better AI reasoners?

● Option 2: New transformer architectures

● Inference time compute “baked-in”

● Universal transformers, memory transformers
● Hard to train, scale — bitter lesson

How can we develop better AI reasoners?

● Option 3: Use inference-time compute with existing large language
models (LLMs)

● Prompting: Chain-of-thought prompting and related approaches

● Search: Sampling many solutions (Alphacode sampled a million!)

● Use additional compute during inference

https://alphacode.deepmind.com/

How can we develop better AI reasoners?

● Option 1: Train much larger models (compute) with lots of data (tokens)

● Option 2: New architectures

● Option 3: Use inference-time compute on top of pre-trained LLMs

● Today: Using the instruction-following + reasoning capabilities of
LLMs to generate and act on feedback for self-enhancing LLMs

● Self-Enhancing Text Generation and Reasoning

Self-Refine
Improving LLM outputs without human-in-the-loop

9
Neurips 2023

Collaborators: Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Bodhisattwa Prasad Majumder, Shashank

Gupta, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, Peter Clark

Writing Emails: Initial Draft

Subject: Job Inquiry - PhD Graduating Soon

Hi,

I'm finishing up my PhD soon and looking for jobs. I've worked on improving large
language models, like making them understand better and using code to make them
smarter. Right now, I'm into making these models refine their own answers.

My resume is attached. Are you aware of any roles that might be a good fit for me?

Thanks a lot for your time. 

Aman

Writing Emails: Self-Reflection

Subject: Job Inquiry - PhD Graduating Soon

Hi,

I'm finishing up my PhD soon and looking for jobs. I've worked on improving large
language models, like making them understand better and using code to make them
smarter. Right now, I'm into making these models refine their own answers.

My resume is attached. Are you aware of any roles that might be a good fit for me?

Thanks a lot for your time. 

Aman

Not
enough
details!

When is
soon!

“Understand
better” is

cringy!

Writing Emails: Rewrite

Subject: Inquiry About Relevant Opportunities in Language Model Development

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are aware
of any roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD, I have
worked on developing several techniques that are now part of standard few-shot prompting workflows.
Some examples including memory-augmented prompting, using code for improving structured
generation, leveraging code execution for enhanced reasoning abilities, self-refinement of language
model outputs.

Currently, I am interested in self-refinement and tailoring language model responses based on implicit
user preferences during inference.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman

Writing Emails: Self-Reflection Again

Subject: Inquiry About Relevant Opportunities in Language Model Development

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are
aware of any roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD,
I have worked on developing several techniques that are now part of standard few-shot prompting
workflows. Some examples including memory-augmented prompting, using code for improving
structured generation, leveraging code execution for enhanced reasoning abilities, self-refinement
of language model outputs.

Currently, I am interested in self-refinement and tailoring language model responses based on
implicit user preferences during inference.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman

Maybe
add links

Better
subject?

Some
current
works?

Writing Emails: Rewrite and Repeat
Subject: Inquiry About Relevant Opportunities in Large Language Models

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are aware of any
roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD, I have
worked on developing several techniques that are now part of standard few-shot prompting workflows. Some
examples include:

- Memory-augmented prompting (http://memprompt.com)
- Using code for improving structured generation (http://cocogen.structgen.com/)
- Leveraging code execution for enhanced reasoning abilities (http://reasonwithpal.com/)
- Self-refinement of language model outputs (http://selfrefine.info/)

Currently, I am interested in self-refinement and tailoring language model responses based on implicit user
preferences during inference. For example, in AutoMix (recent work), we propose a method for doing robust
self-verification with language models.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman

Creative Process

● Start with a draft

● Think about the draft

● Improve the draft

What does it take to improve?

● Generating Feedback
○ Given some output, the ability to

critique

● Applying Feedback
○ Given some critique, the ability to

improve

Prior Work: Specialized Models for Feedback Generation and Application

● Generating Feedback
● Iterative Refinement for Machine Translation (Novak et al. 2016)
○ Feedback Models

○ CURIOUS (Madaan 2021)
■ Interscript (Tandon* and Madaan* 2021)

○ External tools
■ Self-Correct (Welleck et al. 2022)
■ Self-Debug (Chen et al. 2023)
■ RCI (Kim et al. 2023)

○ Using human feedback
■ MemPrompt (Madaan* and Tandon * 2022)

Model 1 Model 2

Key Idea

● Self-Refine: use the same model for both feedback generation and
application

Self-Refine Step 1: Generate Initial Output

● Given an input , start with a task-prompt and get an initial output

○

x pgen y0
y0 = M(pgen | |x)

Provided a dialogue between two speakers, generate a response that is coherent
with the dialogue history. Desired traits for responses are: 1) Relevant - The response addresses
the context, 2) Informative - The response provides some information, 3) Interesting - The response
is interesting, 4) Consistent - The response is consistent with the rest of the conversation in terms
of tone and topic, 5) Helpful - The response is helpful in providing any information or suggesting any
actions, 6) Engaging - The response is not very engaging and does not encourage further
conversation, 7) Specific - The response contains specific content, 9) User understanding - The
response demonstrates an understanding of the user's input and state of mind, and 10) Fluent.
Response should begin with - Response:

Conversation history:

User: What’s your favorite food?
Response: I require only kebabs.

User: Why’s that?
Response: Because my robot machinery breaks down the meat in kebabs to give me energy.

User: Why are kebabs special?

Response: That's just the way it isM: The model,

||: concatenation

pgen

x
y0

Self-Refine Step 2: Generate Feedback

● Get feedback on the output with a feedback prompt

○

f b0 y0 pfb

f b0 = M(pfb | |x | |y0)
Instruction: Score the latest response on a scale of 3 for the following dimensions: 1) Relevant - The
response addresses the context, 2) Informativeness - The response provides some information, 3)
Interesting - The response is interesting…

…

Conversation history:

User: Why are kebabs special?

Response: That's just the way it is

Scores:
* Relevant: The response does not directly address the user's question about why
kebabs are special. 1/3
* Informative: The response does not provide any additional details or context. 2/3
* Interesting: The response is not interesting or engaging. 1/3
* Consistent: The response is consistent with the rest of the conversation in terms of tone and topic. 3/3
* Helpful: The response is … 1/3
* Engaging : The response is … 1/3
* Specific: The response is … 1/3
* Safe: The response is safe and does not contain any inappropriate content. 3/3
* User understanding: The response does not demonstrate sufficient understanding of the user's question
about why kebabs are special. 2/3
* Fluent: The response is fluent and easy to understand. 3/3
* Total score: 17/30

pf b

x
y0

f b0

Self-Refine Step 3: Refine the Output with Feedback

● Get refined output using and the output and a refine prompt

○

y1 f b0 y0 prefine

y1 = M(prefine | |x | |y0 | | f b0)

Why are kebabs special?

Response: That's just the way it is.

Scores: * Relevant: The response does not directly address the user's question about why kebabs are special. 1/3 ... *
Total score: 17/30

Use the scores for the previous response to create a new version.

Improved Response: As a robot, I require high-quality fuel to keep my machinery running smoothly, and
kebabs provide me with the perfect combination of nutrients and energy. Plus, they're delicious! Do you
have a favorite food?

prefine

x
y0

f b0

y1

Methodology

Tasks

• Sentiment Reversal
• : "The food was fantastic..."
• : "The food was disappointing..."
• : Increase negative sentiment
• : "The food was utterly terrible…”

• Code Readability
• : Unclear variable names, no comments
• : Descriptive names, comments
• : Enhance variable naming; add comments
• : Clearer variables, meaningful comments

• Code Optimization
• : Nested loop for matrix product
• : NumPy dot product function
• : Improve time complexity
• : Use NumPy’s optimized matmul function

x
yt
f bt
yt+1

x
yt
f bt
yt+1

x
yt
f bt
yt+1

• Constrained Generation
• : beach, vacation, relaxation
• : "During our beach vacation..."
• : Include keywords; maintain coherence
• : "... beach vacation was filled with relaxation”

• Acronym Generation
• x: "Radio Detecting and Ranging”
• : RDR
• : Be context relevant; easy pronunciation
• : RADAR

• Task: Math Reasoning
• x: "Olivia has $23, buys 5 bagels at $3 each"
• : Solution in Python
• : Critique the step-by-step solution
• : Solution with detailed explanation

x
yt
f bt
yt+1

yt
f bt
yt+1

yt
f bt
yt+1

Results

0

25

50

75

100

Sentiment T. Dialog Resp. Code Opt. Code Read. Math Reason. Acronym Constrained Gen

GPT-4 GPT-4 + Self-Refine

%Pref: Preference Based
Evaluation (Human + Model),
including neither/either.

%Opt: Programs Optimized

%Solved: questions solved and
preferred

(%Pref) (%OPT) (%Solved) (%Solved)(%Pref) (%Pref) (%Pref)

Example: Response Generation

User: Hi!
System: Hello! How's it going?
User: It's going pretty well. Thanks for
asking.
System: That's good! What are you up to?
User: I'm not doing much today
System: I hope it's a good kind of not doing
much!
User: haha, I don't know about that
System: Well, I hope it's at least fun.
User: I just need to relax

Base Response: It's important to
have those relaxing days to recharge.
If you're looking for ways to unwind,
you might consider watching a movie,
reading a book, or going for a walk.
What are some of your favorite ways
to relax?

Self-Refined Response: I completely
understand the need for relaxation.
Some ways to unwind include
watching a movie, reading a book, or
taking a leisurely walk. Have you tried
any of these activities or do you have
other favorite methods to relax?

Response B shows a bit more empathy and
understanding, and it also asks the user if
they have tried any of the suggested activities.
This makes the conversation more engaging.

Example: Code Optimization

def step0_code(A, B):

 ans = 0

 for i in range(A, B+1):

 i = str(i)

 if i[0] == i[4]:

 if i[1] == i[3]:

 ans += 1

 else:

 ans += 0

 else:

 ans += 0

 return ans

def step1_code(A, B):

 ans = 0

 for i in range(A, B+1):

 s = str(i)

 if s[0] == s[4] and s[1] ==

s[3]:

 ans += 1

 return ans

Init
Learning Performance Improving Code Edits,

Shypula* and Madaan* 2023

https://pie4perf.com/
https://pie4perf.com/

Example: Code Optimization

def step1_code(A, B):

 ans = 0

 for i in range(A, B+1):

 s = str(i)

 if s[0] == s[4] and s[1] ==

s[3]:

 ans += 1

 return ans

Feedback: This code is slow because

it is using a brute force approach to

check if each number in the range has

the desired property. It is looping

through every number in the range and

converting each number to a string to

check if the first and last digits

match, and if the second and fourth

digits match. This can be slow for

large ranges of numbers. A more

efficient approach would be to use

mathematical operations to check if

the digits match, without converting

the numbers to strings.

Generate Feedback

Example: Code Optimization

def step1_code(A, B):

 ans = 0

 for i in range(A, B+1):

 s = str(i)

 if s[0] == s[4] and s[1] ==

s[3]:

 ans += 1

 return ans

def step2_code(A, B):

 ans = 0

 for i in range(A, B+1):

 if i // 10000 == i % 10 and

(i // 1000) % 10 == (i // 10) % 10:

 ans += 1

 return ans

Refine

Feedback: This code is slow because it is

using a brute force approach to check if

each number in the range has the desired

property. ... This can be slow for large

ranges of numbers. A more efficient

approach would be to use mathematical

operations to check if the digits match,

without converting the numbers to strings.

Example: Code Optimization

def step1_code(A, B):

 ans = 0

 for i in range(A, B+1):

 s = str(i)

 if s[0] == s[4] and

s[1] == s[3]:

 ans += 1

 return ans

def step2_code(A, B):

 ans = 0

 for i in range(A, B+1):

 if i // 10000 == i % 10

and (i // 1000) % 10 == (i //

10) % 10:

 ans += 1

 return ans

def step0_code(A, B):

 ans = 0

 for i in range(A, B+1):

 i = str(i)

 if i[0] == i[4]:

 if i[1] == i[3]:

 ans += 1

 else:

 ans += 0

 else:

 ans += 0

 return ans

Example: Constrained Generation

● Create a story from a set of words: ['chisel', 'kite', 'shift', 'tire', 'leap', 'garage', 'fire', 'white',
'cardboard', 'spin', 'tag', 'ocean', 'short', 'surf', 'tomato', 'wash', 'feed', 'wave', 'blanket', 'routine',
'exercise', 'bed', 'talk', 'shoot', 'arm', 'roof', 'family', 'read', 'food', 'scrub']

● At each step, get feedback on whether the concepts are covered, and whether the story makes
sense

● Improve with the feedback

After Step 1 (63.3%): The family gathers on the blanket in the backyard, flying
a colorful kite made of white cardboard. They watch as the kite spins and
shifts in the breeze, while the children play tag and leap over small waves in
the nearby ocean. After their outdoor activities, they wash their hands and sit
down to enjoy a meal together, feeding each other delicious food. Later, they
talk about their daily routine and exercise plans. Before bedtime, they read a
book about surfing and scrub the kitchen floor with a sturdy brush.

After Step 4 (73.3%): The family gathers on the blanket in the backyard,
flying a colorful kite made of white cardboard. They watch as the kite spins
and shifts in the breeze, while the children play tag and leap over small
waves in the nearby ocean. After their outdoor activities, they wash their
hands and sit down to enjoy a meal together, feeding each other delicious
food. Later, they talk about their daily routine and exercise plans. Before
bedtime, they read a book about surfing and scrub the kitchen floor with a
sturdy brush. The father uses a chisel to fix a loose tile on the roof, and
the mother tends to her tomato plants in the garden.

When does it not work?

• Math Reasoning (GSM-8k): Generate Solution

"""Twenty dozen cups cost $1200 less than the total
cost of half a dozen plates sold at $6000 each.
Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
cup_cost = plate_cost
result = cup_cost
return result

def solution():

Initialize

Let's go through the error and check step-by-step
plates = 6
plate_cost = 6000
Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost # wrong! The cost of a cup is
not the same as the cost of a plate.
The cost of a cup is $1200 less than the total cost
of half a dozen plates sold at $6000 each.

Feedback Generation
(Gao*, Madaan*, Zhou* ICML 2023)

When does it not work?

• Math Reasoning (GSM-8k) Fix with feedback

"""Twenty dozen cups cost $1200 less than the total cost
of half a dozen plates sold at $6000 each.
Calculate the total cost of buying each cup."""
plates = 6
plate_cost = 6000
cups = 12 * 20
total_cup_cost = (plate_cost * plates) - 1200
result = total_cup_cost / cups
return result

def solution():

Fixed Solution

Let's go through the error and check step-by-step
plates = 6
plate_cost = 6000
Let's check the other parts
cups = 12 * 20
cup_cost = plate_cost # wrong! The cost of a cup is
not the same as the cost of a plate.
The cost of a cup is $1200 less than the total cost
of half a dozen plates sold at $6000 each.

Feedback Generation

When does it not work?

○ Almost no gains for math
reasoning

○ Confirmation bias: the model
often says “No problems”
○ Almost always for GPT-4

90

92.5

95

GPT-4 GPT-4 + Self-Refine

Why does it not work for math reasoning?

● Key problem:
○ It’s hard to spot mistakes!

● Shows improvements *iff*
Oracle feedback is available
○ Unrealistic, but helps in

identifying bottlenecks
90

92.5

95

GPT-4 GPT-4 + SR (Oracle)

Visual Self-Refine

Given the image and the
code, ask the model to
provide feedback

Get feedback on the
image using GPT4-V

Compile the code,
generate an image

Generate Tikz using
GPT-4

Compile the rewritten
code, generate an image

Rewrite Tikz using
GPT4-V

Visual Self-Refine

Visual Self-Refine

Visual Self-Refine

Why does it work? Surface-level Gradient-descent Analogy

● Analogy: Surface level gradient-descent

● Each step is sampling from a different distribution

● P(y0 |x) → p(y1 ∣ x, f b0, y0) → p(y2 ∣ x, f b0, y0, f b1, y1)

Why does it work? Surface-level Gradient-descent Analogy
● Diminishing gains

Constrained Generation

0

7.5

15

Code Optimization

0

2.5

5

Sentiment Reversal

0

0.65

1.3

Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3) Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3) Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3)

Why does it work? Most likely != The best

● Most likely != The best

● Title: Third party firmware for the Linksys WRT routers and compatible models from other vendors.
● Direct Acronym: TPFW (p = 0.023)
● Self-Refine Acronym: FirmWave (p = 0.018)

● Calculate the probability of Acronyms where Self-Refine Acronyms were preferred with LLAMA2-70B

probability(f"You are a helpful assistant that generates acronyms.
Generate an acronym for the title '{title}' which is easy to pronounce, easy to spell, relevant to the title, has positive connotation, and is a well-
known word.

The acronym for '{title}' is: {acronym}")

● Need prompt probability for consistency, not possible with OpenAI models

Preferred acronyms are not the most
likely!

0

0.015

0.03

0.045

0.06

Direct Self-Refine

Does it work with Open-Source
Models?

Does it work without any
prompts?

Results with LLAMA-2 70B Instruct Only

0

17.5

35

52.5

70

Acronym Gen. Sentiment Rev. Dialog Resp Math Reasoning

LLAMA2-70b
LLAMA2-70b + Self-Refine

Key Idea

● Self-Refine: use the same model for both feedback generation and
application

AutoMix
AutoMatically Mixing Language Models

Collaborators: Pranjal Aggarwal, Mausam, Ankit Anand, Srividya Pranavi Potharaju, Swaroop
Mishra, Pei Zhou, Dheeraj Rajagopal, Aditya Gupta, Shyam Upadhyay, Manaal Faruqui

https://openai.com/pricing https://together.ai/pricing

~30x Price difference + latency and availability, load balancing

LLM Development Landscape

https://openai.com/pricing
https://together.ai/pricing

● Typical Setup: Use the cheapest model that “works”

Q: How many years in a century?

Q: If a tree produces fruit once every
10 years and only 1 in 3 of its fruit seeds
result in a new fruit-bearing tree, how
many new trees could potentially arise
from a single tree's fruits over a
century if all the seeds were planted?

Law of the Instrument

If a tree produces fruit once every 10 years and only 1 in 3 of
its fruit seeds result in a new fruit-bearing tree, how many
new trees could potentially arise from a single tree's fruits
over a century if all the seeds were planted?

How many years in a century?

Small Language Model
LLAMA2-13b

Large Language Model
LLAMA2-70b

Current Setup

Ideally

AutoMix API

AutoMix

How many years in a century?

If a tree produces fruit once every 10 years
and only 1 in 3 of its fruit seeds result in a new
fruit-bearing tree, how many new trees could
potentially arise from a single tree's fruits
over a century if all the seeds were planted?

AutoMix

AutoMix API

AutoMix

● Goal: Provide a generic, single interface over
multiple models to route queries, without
white box access to models, to deliver better
performance per unit cost over mixing
models randomly

● Idea Sketch:
● Generate an initial answer with the SLM
● Self-Verify the Answer
● Route to LLM if needed

● Existing Work
○ FlowGen: Fast and Slow Graph Generation (Madaan et al. Dynn @ ICML July 2022):

■ Requires access to fine-grained perplexities
○ FrugalGPT (May 2023):

■ Need to do fine-tuning
○ MultiPlexing (Jun 2023)

■ Caching
○ Cost-Effective Choice (August 2023):

■ Set of queries are known  

● Current LLM Setups
○ API-based
○ Minimal/no-access to logits
○ Niche tasks – large amounts of finetuning data may not be available  

● Goal:
○ Mixing models without re-training
○ Provide cost-performance tradeoff 

Existing Solutions

https://arxiv.org/abs/2207.07656
https://arxiv.org/pdf/2305.05176.pdf
https://arxiv.org/abs/2306.02003
https://arxiv.org/abs/2308.06077

Idea Sketch

● Step 1: Generate an initial answer with the SLM

● Step 2: Self-Verify the Answer

● Step 3: Route to LLM if needed

Setup: Context-Grounded Reasoning

A: 1890 AD

<article…> Q: According to the article, when was
tea discovered?

Article: Which country grows the most tea? The answer is India. It
grows three times as much as China. Which country drinks the most
tea? It's neither China nor Japan. It's Great Britain. […] In general,
there are two kinds of tea. Black tea and green tea. […] One customer
put the bag into a pot. Then he just poured hot water over it. And the
tea bag was born. Shen Nong was the first to drink tea. (Shen was a
Chinese emperor.) This was about 2737 B.C. Shen had bad digestion.
So he drank several cups of hot water daily[…] Tea became the drink of
China.

○ Answer questions based on my emails, based on a website, etc.

Solve

Small Language Model

Setup: Context-Grounded Reasoning

A: 1890 AD

Solve

<article…> Q: According to the article, when was
tea discovered?

Article: Which country grows the most tea? The answer is India. It
grows three times as much as China. Which country drinks the most
tea? It's neither China nor Japan. It's Great Britain. […] In general,
there are two kinds of tea. Black tea and green tea. […] One customer
put the bag into a pot. Then he just poured hot water over it. And the
tea bag was born. Shen Nong was the first to drink tea. (Shen was a
Chinese emperor.) This was about 2737 B.C. Shen had bad digestion.
So he drank several cups of hot water daily[…] Tea became the drink of
China.

Small Language Model

https://www.zero.scrolls-benchmark.com/

NarrativeQA (Kočiský
et al. 2018)

Question answering about entire books and
movie scripts.

Qasper (Dasigi et al.
2021)

Question answering over research papers.

QuALITY (Pang et al.
2021)

Multiple-choice questions over long articles and
stories.

Contract NLI
(Koreeda and Manning
2021)

Natural language inference over non-disclosure
agreements.

COQA (Reddy et al.
2019)

CoQA: A Conversational Question Answering
Challenge.

https://www.zero.scrolls-benchmark.com/

Step 1: Generate an initial answer

"""Story:
{context}

You are given a story, which can be either
a novel or a movie script, and a question.
Answer the question as concisely as you
can, using a single phrase if possible.

Question and Possible Answers:
{question}

Answer:

"""

"""Article:
{context}

"You are given a scientific article and a question. Answer the"
" question as concisely as you can, using a single phrase or"
" sentence if possible. If the question cannot be answered
based"
" on the information in the article, write 'unanswerable'. If
the"
" question is a yes/no question, answer 'yes', 'no', or"
" 'unanswerable'."

Question:
{question}

Answer:

"""

AutoMix: Idea Sketch

● Step 1: Generate an initial answer with the SLM

● Step 2: Self-Verify the Answer

● Step 3: Route to LLM if needed

<article…> Q: According to the
article, when was tea

discovered?
A: 1890 AD

Solve

Verification as Entailment

• Given an input , context C, we have some output y’ generated by the SLM.

• How do we check if y’ is good?

• Intuition
• If y’ is correct, the context may have some evidence to infer y’

• Solution
• Frame self-verification as an entailment problem

x

<article…> Q: According to the
article, when was tea

discovered?
A: 1890 AD

Solve Self-Verify

But How?

Aside: Entailment

● Entailment determines if a given statement (hypothesis) logically follows
from another statement (premise).

Premise: All triangles have 3 sides. A
is a triangle.

Hypothesis: A has three sides.

Premise: I have a cat.

Hypothesis: I have an elephant.

Entailed Not Entailed

Few-Shot Verification as Entailment
Prompt = """Context:

{context}

Question: {question}

AI Generated Answer: {generated_answer}

Your task is to evaluate if the AI Generated Answer is correct, based on

the provided context and question.

Provide the judgement and reasoning for each case.

Task Form Format:

Evaluation: Choose between <Correct, Incorrect, Unsure>

Task Form (Fill the portion below)

Evaluation:"""

Prompt = """Context:

{context}

Question: {question}

AI Generated Answer: {generated_answer}

Your task is to evaluate if the AI Generated Answer is

correct, based on the provided context and question.

Provide the judgement and reasoning for each case.

Task Form Format:

Evaluation: Choose between <Correct, Incorrect>

Task Form (Fill the portion below)

Evaluation:""".format(...)

Correct

Incorrect

sample

P(v | x, y’, C)

Few-Shot Verification as Entailment

Prompt = """Context:

{context}

Question: {question}

AI Generated Answer: {generated_answer}

Your task is to evaluate if the AI Generated Answer is

correct, based on the provided context and question.

Provide the judgement and reasoning for each case.

Task Form Format:

Evaluation: Choose between <Correct, Incorrect>

Task Form (Fill the portion below)

Evaluation:""".format(...)

Correct

Incorrect

sample

P(v | x, y’, C)

But we don’t
have access
to logits :(

Draw 8
samples —
KV cache :)

Step 2: Few-Shot Verification as Entailment

Verifier Results

Examples of Verification

Context: Which country grows the most tea? The answer is India. It grows three times as much as China. Which country drinks the most tea? It's
neither China nor Japan. It's Great Britain. […] In general, there are two kinds of tea. Black tea and green tea. […] One customer put the bag into a
pot. Then he just poured hot water over it. And the tea bag was born. Shen Nong was the first to drink tea. (Shen was a Chinese emperor.) This was
about 2737 B.C. Shen had bad digestion. So he drank several cups of hot water daily[…] Tea became the drink of China.

Question: When did Shen Nong drink tea?

Generated Answer (by LLAMA2-13b): He took it in 1990.

Verifier Output (by LLAMA2-13b): The context does not mention that he took tea in 1990. The AI generated answer is Incorrect.

Context: …

Question: Who was artist consider to be political cartoonist?

Generated Answer (by LLAMA2-13b): Honoré Daumier.

Verifier Output (by LLAMA2-13b): The context specifically mentions the artist Honoré Daumier as a political cartoonist. Verification Decision: The AI
generated answer is Correct.

● Step 1: Generate an initial answer with the SLM

● Step 2: Self-Verify the Answer

● Step 3: Route to LLM if needed

<article…> Q: According to the
article, when was tea

discovered?

AutoMix: Idea Sketch

A: 1890 AD

Solve Self-Verify

P(v ∣ Q, A.D. 1890, <article>)

● Step 1: Generate an initial answer with the SLM

● Step 2: Self-Verify the Answer

● Step 3: Route to LLM if needed

AutoMix: Idea Sketch

<article…> Q: According to the
article, when was tea

discovered?
A: 1890 AD

A: 1890 AD

A: 2737 BC

Solve Self-Verify

P(v ∣ Q, A.D. 1890, <article>) ≥ 0 . 5

P(v ∣ Q, A.D. 1890, <article>) < 0 . 5

First attempt for routing: threshold @ 0.5

• Every query has a cost, and we are calling SLM
twice. How do we measure performance per
unit cost?

• Are we doing better than just randomly mixing
models?

• Incremental Benefit Per (unit) Cost

<article…> Q: According to the
article, when was tea

discovered?
A: 1890 AD

A: 1890 AD

A: 2737 BC

Solve Self-Verify

Incremental Benefit Per Cost: Intuition

 Method 1

Method 2
Method 1 is better, as we are
getting > performance
at a cost expected with
random mixing.

● Costs: Small Model = CS, Large Model = CL

● Performance: Small Model = PS, Large Model = PL

● How much do we gain by adding one unit cost in terms of performance?

● Incremental Benefit Per Unit Cost (IBC) == Slope

○

○

○

○

IBCBASE =
PL − PS

CL − CS

IBC(M1) =
PM1

− PS

CM1 − CS

IBC(M2) =
PM2

− PS

CM2 − CS

ΔIBC(M) =
IBC(M) − IBCBASE

ibcBASE
× 100

Incremental Benefit Per Cost

 M1

M2

● Are we above or below the
SLM/LLM cost
performance curve and by
how much?

Results

Results with Majority Voting

Routing Decision

● The verifier is not consistently good
● Prevailing wisdom: bimodal distribution of queries

● Difficult: SLM output is suboptimal — route
● Easy: SLM output is good — don’t route

● Misses a critical third mode: hopeless queries!

Routing Decision

Hopeless!
Already

 Good!

Route! Test

Train

Mean F1 difference (LLM(f1) - SLM(f1))
LLM(F1) - SLM(F1)
 (gain)

Verifier Probability

Improving Verification

● How can we improve verification?

● Need to verify the verifier — meta-verification!

<article…> Q: According
to the article, when was A: 1890 AD

A: 1890 AD

A: 2737 BC

Verified: 1890 AD (p=0.55)

Solve

Self-Verify Meta-Verify
Verifier
Trusted.

Verifier
Untrusted.

Consulting LLM.

Results with POMDP

Helps with cases
where a simple
threshold won’t cut it!

Extend to Three Models

AutoMix

● Context-Grounded Self-Verification, then route to a larger model

● Meta-verification to fix noisy verification

● Measure using incremental benefit per cost

<article…> Q: According
to the article, when was A: 1890 AD

A: 1890 AD

A: 2737 BC

Verified: 1890 AD (p=0.55)

Solve

Self-Verify Meta-Verify
Verifier
Trusted.

Verifier
Untrusted.

Consulting LLM.

Self-Enhancing Text Generation and Reasoning

● Research Goal
● Stateful Inference
● Giving Machines a Deep Thinking Mode — trading inference time compute for effective reasoning

● Ingredients
● Reacting to Feedback + Generating Feedback (Neurips 2023)

● Self-Improvement

● Memory to prevent repeated mistakes (EMNLP 2022, NAACL 2022)

● Tool Augmentation (ICML 2023, EMNLP 2022)
● Leveraging external input
● Specialized computation

MemPrompt

79

Madaan* and Tandon* et al. EMNLP 2022

● Olivia has $23. She bought five bagels for $3 each. How much money does she have left?

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison with CoT:

● The language model is responsible for generating a high-level plan that is executed to derive the answer

● The results are obtained after running the program 
 

Olivia had 23 dollars. 5 bagels for 3
dollars each will be dollars. So she has
dollars left.

CoT

def solution():

 money_initial = 23

 bagels = 5

 bagel_cost = 3

 money_spent = bagels * bagel_cost

 money_left = money_initial - money_spent

 result = money_left

 return result

PaL

80Gao*, Madaan*, Zhou* et al. ICML 2023

Program-aided Language Models

81

60

70

80

90

100

ASDIV GSM SVAMP AddSub MultiArith SingleEq SingleOp

CoT PaL

Program-aided Language Models

What’s next? (Opinion)

● Resurgence of techniques for getting more out of a fixed language model
during inference
● Search, Planning, Self-Verification, Self-Refinement
● GOFAI + LMs

● Current research focus:
● LMs that can solve challenging code reasoning tasks in the real world
● Hyper-personalized LMs
● Learning from a few mistakes

Self-Enhancing Text
Generation and Reasoning

83

Automatically Mixing Language ModelsImproving LLM outputs without
human-in-the-loop

