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About Me

● Research Interest: Improving the reasoning capabilities of large language 
models 

● Currently excited about 
● Using inference-time compute for effective and efficient reasoning 

● Blending code generation and reasoning 

● Before Ph.D. 
● Principal Member of Technical Staff @ Oracle 



Agenda

● Self-Refine:  Improving initial outputs from large language models (LLMs) 
through cycles of self-feedback and refinement.  

● AutoMix: Combining LLMs of varying costs and capabilities using 
context-grounded self-verification. 

● How can we develop better AI reasoners? 
● The case for inference-time compute.



How can we develop better AI reasoners?

● Current LLM setup: Input  Output 
● Language models are eager generators 

● Difficult solutions rarely come in one attempt 
● Hard not to think about the text we generate 

● How do we develop AI systems that can do better reasoning? 
● Models that can take more time but generate better responses 

● More flops 
● “System 2” or slow thinking (Kahneman et al.)

→

Kahneman, Daniel. Thinking, fast and slow. macmillan, 2011.



How can we develop better AI reasoners?

● Option 1: Train much larger models (compute) with lots of data (tokens) 

● How much compute do we need? 
● Engineering complexity, serving 

https://dynomight.net/scaling/ 
https://a16z.com/navigating-the-high-cost-of-ai-compute/



How can we develop better AI reasoners?

● Option 2: New transformer architectures 

● Inference time compute “baked-in” 

● Universal transformers, memory transformers 
● Hard to train, scale — bitter lesson



How can we develop better AI reasoners?

● Option 3: Use inference-time compute with existing large language 
models (LLMs) 

● Prompting: Chain-of-thought prompting and related approaches 

● Search: Sampling many solutions (Alphacode sampled a million!) 

● Use additional compute during inference

https://alphacode.deepmind.com/


How can we develop better AI reasoners?

● Option 1: Train much larger models (compute) with lots of data (tokens) 

● Option 2: New architectures 

● Option 3: Use inference-time compute on top of pre-trained LLMs 

● Today: Using the instruction-following + reasoning capabilities of 
LLMs to generate and act on feedback for self-enhancing LLMs 

● Self-Enhancing Text Generation and Reasoning



Self-Refine
Improving LLM outputs without human-in-the-loop

9
Neurips 2023

Collaborators: Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri 
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Bodhisattwa Prasad Majumder, Shashank 

Gupta, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, Peter Clark



Writing Emails: Initial Draft

Subject: Job Inquiry - PhD Graduating Soon

Hi,

I'm finishing up my PhD soon and looking for jobs. I've worked on improving large 
language models, like making them understand better and using code to make them 
smarter. Right now, I'm into making these models refine their own answers.

My resume is attached. Are you aware of any roles that might be a good fit for me?

Thanks a lot for your time. 

Aman



Writing Emails: Self-Reflection

Subject: Job Inquiry - PhD Graduating Soon

Hi,

I'm finishing up my PhD soon and looking for jobs. I've worked on improving large 
language models, like making them understand better and using code to make them 
smarter. Right now, I'm into making these models refine their own answers.

My resume is attached. Are you aware of any roles that might be a good fit for me?

Thanks a lot for your time. 

Aman

Not 
enough 
details!

When is 
soon!

“Understand 
better” is 

cringy!



Writing Emails: Rewrite

Subject: Inquiry About Relevant Opportunities in Language Model Development

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are aware 
of any roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD, I have 
worked on developing several techniques that are now part of standard few-shot prompting workflows. 
Some examples including memory-augmented prompting, using code for improving structured 
generation, leveraging code execution for enhanced reasoning abilities, self-refinement of language 
model outputs.

Currently, I am interested in self-refinement and tailoring language model responses based on implicit 
user preferences during inference.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman



Writing Emails: Self-Reflection Again

Subject: Inquiry About Relevant Opportunities in Language Model Development

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are 
aware of any roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD, 
I have worked on developing several techniques that are now part of standard few-shot prompting 
workflows. Some examples including memory-augmented prompting, using code for improving 
structured generation, leveraging code execution for enhanced reasoning abilities, self-refinement 
of language model outputs.

Currently, I am interested in self-refinement and tailoring language model responses based on 
implicit user preferences during inference.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman

Maybe 
add links

Better 
subject?

Some 
current 
works?



Writing Emails: Rewrite and Repeat
Subject: Inquiry About Relevant Opportunities in Large Language Models

I hope you're doing well.

I'm on the job market (I expect to graduate in March/April 2024), and I was wondering if you are aware of any 
roles on your team that will be relevant to my background.

I am interested in improving the reasoning capabilities of large language models. During my PhD, I have 
worked on developing several techniques that are now part of standard few-shot prompting workflows. Some 
examples include:

- Memory-augmented prompting (http://memprompt.com)
- Using code for improving structured generation (http://cocogen.structgen.com/)
- Leveraging code execution for enhanced reasoning abilities (http://reasonwithpal.com/)
- Self-refinement of language model outputs (http://selfrefine.info/)

Currently, I am interested in self-refinement and tailoring language model responses based on implicit user 
preferences during inference. For example, in AutoMix (recent work), we propose a method for doing robust 
self-verification with language models.

I have attached my resume for your reference.

Thanks for your time and consideration.

Best,
Aman



Creative Process

● Start with a draft 

● Think about the draft 

● Improve the draft



What does it take to improve?

● Generating Feedback 
○ Given some output, the ability to 

critique

● Applying Feedback 
○ Given some critique, the ability to 

improve



Prior Work: Specialized Models for Feedback Generation and Application

● Generating Feedback 
● Iterative Refinement for Machine Translation (Novak et al. 2016) 
○ Feedback Models 

○ CURIOUS (Madaan 2021) 
■ Interscript (Tandon* and Madaan* 2021) 

○ External tools 
■ Self-Correct (Welleck et al. 2022) 
■ Self-Debug (Chen et al. 2023) 
■ RCI (Kim et al. 2023) 

○ Using human feedback 
■ MemPrompt (Madaan* and Tandon * 2022)

Model 1 Model 2



Key Idea

● Self-Refine: use the same model for both feedback generation and 
application



Self-Refine Step 1: Generate Initial Output

● Given an input , start with a task-prompt  and get an initial output  

○

x pgen y0
y0 = M(pgen | |x)

Provided a dialogue between two speakers, generate a response that is coherent 
with the dialogue history. Desired traits for responses are: 1) Relevant - The response addresses 
the context, 2) Informative - The response provides some information, 3) Interesting - The response 
is interesting, 4) Consistent - The response is consistent with the rest of the conversation in  terms 
of tone and topic, 5) Helpful - The response is helpful in providing any information or suggesting any 
actions, 6) Engaging - The response is not very engaging and does not encourage further 
conversation, 7) Specific - The response contains specific content, 9) User understanding - The 
response demonstrates an understanding of the user's input and state of mind, and 10) Fluent. 
Response should begin with - Response: 

### 
       
Conversation history: 

User: What’s your favorite food? 
Response: I require only kebabs. 

User: Why’s that? 
Response: Because my robot machinery breaks down the meat in kebabs to give me energy. 

User: Why are kebabs special? 

Response: That's just the way it isM: The model,  

||: concatenation

pgen

x
y0



Self-Refine Step 2: Generate Feedback

● Get feedback  on the output  with a feedback prompt  

○

f b0 y0 pfb

f b0 = M(pfb | |x | |y0)
Instruction: Score the latest response on a scale of 3 for the following dimensions: 1) Relevant - The 
response addresses the context, 2) Informativeness - The response provides some information, 3) 
Interesting - The response is interesting… 

… 

Conversation history: 

User: Why are kebabs special? 

Response: That's just the way it is 
  
Scores: 
* Relevant: The response does not directly address the user's question about why 
kebabs are special. 1/3 
* Informative: The response  does not provide any additional details or context. 2/3 
* Interesting: The response is not interesting or engaging. 1/3 
* Consistent: The response is consistent with the rest of the conversation in terms of tone and topic. 3/3 
* Helpful: The response is … 1/3 
* Engaging : The response is … 1/3 
* Specific: The response is … 1/3 
* Safe: The response is safe and does not contain any inappropriate content. 3/3 
* User understanding: The response does not demonstrate sufficient understanding of the user's question 
about why kebabs are special. 2/3 
* Fluent: The response is fluent and easy to understand. 3/3 
* Total score: 17/30

pf b

x
y0

f b0



Self-Refine Step 3: Refine the Output with Feedback

● Get refined output  using   and the output    and a refine prompt  

○

y1 f b0 y0 prefine

y1 = M(prefine | |x | |y0 | | f b0)

Why are kebabs special? 

Response: That's just the way it is. 

Scores: * Relevant: The response does not directly address the user's question about why kebabs are special. 1/3 ... * 
Total score: 17/30 

Use the scores for the previous response to create a new version.

Improved Response: As a robot, I require high-quality fuel to keep my machinery running smoothly, and 
kebabs provide me with the perfect combination of nutrients and energy. Plus, they're delicious! Do you 
have a favorite food?

prefine

x
y0

f b0

y1



Methodology



Tasks

• Sentiment Reversal 
• : "The food was fantastic..." 
• : "The food was disappointing..." 
• : Increase negative sentiment 
• : "The food was utterly terrible…” 

• Code Readability 
• : Unclear variable names, no comments 
• : Descriptive names, comments 
• : Enhance variable naming; add comments 
• : Clearer variables, meaningful comments 

• Code Optimization 
• : Nested loop for matrix product 
• : NumPy dot product function 
• : Improve time complexity 
• : Use NumPy’s optimized matmul function

x
yt
f bt
yt+1

x
yt
f bt
yt+1

x
yt
f bt
yt+1

• Constrained Generation 
• : beach, vacation, relaxation 
• : "During our beach vacation..." 
• : Include keywords; maintain coherence 
• : "... beach vacation was filled with relaxation” 

• Acronym Generation 
• x: "Radio Detecting and Ranging” 
• : RDR 
• : Be context relevant; easy pronunciation 
• : RADAR 

• Task: Math Reasoning 
• x: "Olivia has $23, buys 5 bagels at $3 each" 
• : Solution in Python 
• : Critique the step-by-step solution 
• : Solution with detailed explanation 

x
yt
f bt
yt+1

yt
f bt
yt+1

yt
f bt
yt+1



Results

0
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Sentiment T. Dialog Resp. Code Opt. Code Read. Math Reason. Acronym Constrained Gen

GPT-4 GPT-4 + Self-Refine

%Pref: Preference Based 
Evaluation (Human + Model), 
including neither/either. 

%Opt: Programs Optimized 

%Solved: questions solved and 
preferred 

(%Pref) (%OPT) (%Solved) (%Solved)(%Pref) (%Pref) (%Pref)



Example: Response Generation

User: Hi! 
System: Hello! How's it going? 
User: It's going pretty well. Thanks for 
asking. 
System: That's good! What are you up to? 
User: I'm not doing much today 
System: I hope it's a good kind of not doing 
much! 
User: haha, I don't know about that 
System: Well, I hope it's at least fun. 
User: I just need to relax 

Base Response: It's important to 
have those relaxing days to recharge. 
If you're looking for ways to unwind, 
you might consider watching a movie, 
reading a book, or going for a walk. 
What are some of your favorite ways 
to relax?

Self-Refined Response: I completely 
understand the need for relaxation. 
Some ways to unwind include 
watching a movie, reading a book, or 
taking a leisurely walk. Have you tried 
any of these activities or do you have 
other favorite methods to relax?

Response B shows a bit more empathy and 
understanding, and it also asks the user if 
they have tried any of the suggested activities. 
This makes the conversation more engaging.



Example: Code Optimization

def step0_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       i = str(i) 

       if i[0] == i[4]: 

           if i[1] == i[3]: 

               ans += 1 

           else: 

               ans += 0 

       else: 

           ans += 0 

   return ans 

def step1_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       s = str(i) 

       if s[0] == s[4] and s[1] == 

s[3]: 

           ans += 1 

   return ans

Init
Learning Performance Improving Code Edits, 

Shypula* and Madaan* 2023

https://pie4perf.com/
https://pie4perf.com/


Example: Code Optimization

def step1_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       s = str(i) 

       if s[0] == s[4] and s[1] == 

s[3]: 

           ans += 1 

   return ans

# Feedback: This code is slow because 

it is using a brute force approach to 

check if each number in the range has 

the desired property. It is looping 

through every number in the range and 

converting each number to a string to 

check if the first and last digits 

match, and if the second and fourth 

digits match. This can be slow for 

large ranges of numbers. A more 

efficient approach would be to use 

mathematical operations to check if 

the digits match, without converting 

the numbers to strings. 

Generate Feedback



Example: Code Optimization

def step1_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       s = str(i) 

       if s[0] == s[4] and s[1] == 

s[3]: 

           ans += 1 

   return ans

def step2_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       if i // 10000 == i % 10 and 

(i // 1000) % 10 == (i // 10) % 10: 

           ans += 1 

   return ans

Refine

# Feedback: This code is slow because it is 

using a brute force approach to check if 

each number in the range has the desired 

property. ... This can be slow for large 

ranges of numbers. A more efficient 

approach would be to use mathematical 

operations to check if the digits match, 

without converting the numbers to strings.



Example: Code Optimization

def step1_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       s = str(i) 

       if s[0] == s[4] and 

s[1] == s[3]: 

           ans += 1 

   return ans

def step2_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       if i // 10000 == i % 10 

and (i // 1000) % 10 == (i // 

10) % 10: 

           ans += 1 

   return ans

def step0_code(A, B): 

   ans = 0 

   for i in range(A, B+1): 

       i = str(i) 

       if i[0] == i[4]: 

           if i[1] == i[3]: 

               ans += 1 

           else: 

               ans += 0 

       else: 

           ans += 0 

   return ans



Example: Constrained Generation

● Create a story from a set of words: ['chisel', 'kite', 'shift', 'tire', 'leap', 'garage', 'fire', 'white', 
'cardboard', 'spin', 'tag', 'ocean', 'short', 'surf', 'tomato', 'wash', 'feed', 'wave', 'blanket', 'routine', 
'exercise', 'bed', 'talk', 'shoot', 'arm', 'roof', 'family', 'read', 'food', 'scrub'] 

● At each step, get feedback on whether the concepts are covered, and whether the story makes 
sense


● Improve with the feedback



After Step 1 (63.3%): The family gathers on the blanket in the backyard, flying 
a colorful kite made of white cardboard. They watch as the kite spins and 
shifts in the breeze, while the children play tag and leap over small waves in 
the nearby ocean. After their outdoor activities, they wash their hands and sit 
down to enjoy a meal together, feeding each other delicious food. Later, they 
talk about their daily routine and exercise plans. Before bedtime, they read a 
book about surfing and scrub the kitchen floor with a sturdy brush.

After Step 4 (73.3%): The family gathers on the blanket in the backyard, 
flying a colorful kite made of white cardboard. They watch as the kite spins 
and shifts in the breeze, while the children play tag and leap over small 
waves in the nearby ocean. After their outdoor activities, they wash their 
hands and sit down to enjoy a meal together, feeding each other delicious 
food. Later, they talk about their daily routine and exercise plans. Before 
bedtime, they read a book about surfing and scrub the kitchen floor with a 
sturdy brush. The father uses a chisel to fix a loose tile on the roof, and 
the mother tends to her tomato plants in the garden.



When does it not work?

• Math Reasoning (GSM-8k): Generate Solution 

"""Twenty dozen cups cost $1200 less than the total 
cost of half a dozen plates sold at $6000 each. 
Calculate the total cost of buying each cup.""" 
plates = 6 
plate_cost = 6000 
cups = 12 * 20 
cup_cost = plate_cost 
result = cup_cost 
return result 

def solution():

Initialize

# Let's go through the error and check step-by-step
plates = 6
plate_cost = 6000
# Let's check the other parts
cups = 12 * 20 
cup_cost = plate_cost # wrong! The cost of a cup is 
not the same as the cost of a plate. 
# The cost of a cup is $1200 less than the total cost 
of half a dozen plates sold at $6000 each. 

Feedback Generation
(Gao*, Madaan*, Zhou* ICML 2023)



When does it not work?

• Math Reasoning (GSM-8k) Fix with feedback 

"""Twenty dozen cups cost $1200 less than the total cost 
of half a dozen plates sold at $6000 each. 
Calculate the total cost of buying each cup.""" 
plates = 6 
plate_cost = 6000 
cups = 12 * 20 
total_cup_cost = (plate_cost * plates) - 1200 
result = total_cup_cost / cups 
return result

 

def solution():

Fixed Solution

# Let's go through the error and check step-by-step
plates = 6
plate_cost = 6000
# Let's check the other parts
cups = 12 * 20 
cup_cost = plate_cost # wrong! The cost of a cup is 
not the same as the cost of a plate. 
# The cost of a cup is $1200 less than the total cost 
of half a dozen plates sold at $6000 each. 

Feedback Generation



When does it not work?

○ Almost no gains for math 
reasoning 

○ Confirmation bias: the model 
often says “No problems” 
○ Almost always for GPT-4

90

92.5

95

GPT-4 GPT-4 + Self-Refine



Why does it not work for math reasoning?

● Key problem: 
○ It’s hard to spot mistakes! 

● Shows improvements *iff* 
Oracle feedback is available 
○ Unrealistic, but helps in 

identifying bottlenecks 
90

92.5

95

GPT-4 GPT-4 + SR (Oracle)



Visual Self-Refine

Given the image and the 
code, ask the model to 
provide feedback 

Get feedback on the 
image using GPT4-V

Compile the code, 
generate an image

Generate Tikz using 
GPT-4

Compile the rewritten 
code, generate an image 

Rewrite Tikz using 
GPT4-V



Visual Self-Refine



Visual Self-Refine



Visual Self-Refine



Why does it work? Surface-level Gradient-descent Analogy

● Analogy: Surface level gradient-descent 

● Each step is sampling from a different distribution 

● P(y0 |x) → p(y1 ∣ x, f b0, y0) → p(y2 ∣ x, f b0, y0, f b1, y1)



Why does it work? Surface-level Gradient-descent Analogy
● Diminishing gains 

Constrained Generation

0

7.5

15

Code Optimization

0

2.5

5

Sentiment Reversal

0

0.65

1.3

Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3) Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3) Δ(y0 → y1) Δ(y1 → y2) Δ(y2 → y3)



Why does it work? Most likely != The best

● Most likely != The best 

● Title: Third party firmware for the Linksys WRT routers and compatible models from other vendors. 
● Direct Acronym: TPFW (p = 0.023) 
● Self-Refine Acronym: FirmWave (p = 0.018) 

● Calculate the probability of Acronyms where Self-Refine Acronyms were preferred with LLAMA2-70B 

probability(f"You are a helpful assistant that generates acronyms.
Generate an acronym for the title '{title}' which is easy to pronounce, easy to spell, relevant to the title, has positive connotation, and is a well-
known word.

The acronym for '{title}' is: {acronym}")

● Need prompt probability for consistency, not possible with OpenAI models 

Preferred acronyms are not the most 
likely!

0

0.015

0.03

0.045

0.06

Direct Self-Refine



Does it work with Open-Source 
Models? 

Does it work without any 
prompts?



Results with LLAMA-2 70B Instruct Only
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Acronym Gen. Sentiment Rev. Dialog Resp Math Reasoning

LLAMA2-70b
LLAMA2-70b + Self-Refine



Key Idea

● Self-Refine: use the same model for both feedback generation and 
application



AutoMix 
AutoMatically Mixing Language Models

Collaborators: Pranjal Aggarwal, Mausam, Ankit Anand, Srividya Pranavi Potharaju, Swaroop 
Mishra, Pei Zhou, Dheeraj Rajagopal, Aditya Gupta, Shyam Upadhyay, Manaal Faruqui 



https://openai.com/pricing https://together.ai/pricing

~30x Price difference + latency and availability, load balancing 

LLM Development Landscape

https://openai.com/pricing
https://together.ai/pricing


● Typical Setup: Use the cheapest model that “works”

Q: How many years in a century?

Q: If a tree produces fruit once every 
10 years and only 1 in 3 of its fruit seeds 
result in a new fruit-bearing tree, how 
many new trees could potentially arise 
from a single tree's fruits over a 
century if all the seeds were planted?

Law of the Instrument



If a tree produces fruit once every 10 years and only 1 in 3 of 
its fruit seeds result in a new fruit-bearing tree, how many 
new trees could potentially arise from a single tree's fruits 
over a century if all the seeds were planted?

How many years in a century?

Small Language Model 
LLAMA2-13b

Large Language Model 
LLAMA2-70b

Current Setup



Ideally

AutoMix API

AutoMix

How many years in a century?

If a tree produces fruit once every 10 years 
and only 1 in 3 of its fruit seeds result in a new 
fruit-bearing tree, how many new trees could 
potentially arise from a single tree's fruits 
over a century if all the seeds were planted?



AutoMix

AutoMix API

AutoMix

● Goal: Provide a generic, single interface over 
multiple models to route queries, without 
white box access to models, to deliver better 
performance per unit cost over mixing 
models randomly 

● Idea Sketch: 
● Generate an initial answer with the SLM 
● Self-Verify the Answer 
● Route to LLM if needed



● Existing Work 
○ FlowGen: Fast and Slow Graph Generation (Madaan et al. Dynn @ ICML July 2022): 

■ Requires access to fine-grained perplexities
○ FrugalGPT (May 2023): 

■ Need to do fine-tuning
○ MultiPlexing (Jun 2023) 

■ Caching
○ Cost-Effective Choice (August 2023):  

■ Set of queries are known  

● Current LLM Setups
○ API-based
○ Minimal/no-access to logits
○ Niche tasks – large amounts of finetuning data may not be available  

● Goal:
○ Mixing models without re-training
○ Provide cost-performance tradeoff 

Existing Solutions

https://arxiv.org/abs/2207.07656
https://arxiv.org/pdf/2305.05176.pdf
https://arxiv.org/abs/2306.02003
https://arxiv.org/abs/2308.06077


Idea Sketch 

● Step 1: Generate an initial answer with the SLM 

● Step 2: Self-Verify the Answer 

● Step 3: Route to LLM if needed



Setup: Context-Grounded Reasoning

A: 1890 AD

<article…> Q: According to the article, when was 
tea discovered?

Article: Which country grows the most tea? The answer is India. It 
grows three times as much as China. Which country drinks the most 
tea? It's neither China nor Japan. It's Great Britain. […] In general, 
there are two kinds of tea. Black tea and green tea. […] One customer 
put the bag into a pot. Then he just poured hot water over it. And the 
tea bag was born. Shen Nong was the first to drink tea. (Shen was a 
Chinese emperor.) This was about 2737 B.C. Shen had bad digestion. 
So he drank several cups of hot water daily[…] Tea became the drink of 
China.

○ Answer questions based on my emails, based on a website, etc.


Solve

Small Language Model



Setup: Context-Grounded Reasoning

A: 1890 AD

Solve

<article…> Q: According to the article, when was 
tea discovered?

Article: Which country grows the most tea? The answer is India. It 
grows three times as much as China. Which country drinks the most 
tea? It's neither China nor Japan. It's Great Britain. […] In general, 
there are two kinds of tea. Black tea and green tea. […] One customer 
put the bag into a pot. Then he just poured hot water over it. And the 
tea bag was born. Shen Nong was the first to drink tea. (Shen was a 
Chinese emperor.) This was about 2737 B.C. Shen had bad digestion. 
So he drank several cups of hot water daily[…] Tea became the drink of 
China.

Small Language Model

https://www.zero.scrolls-benchmark.com/

NarrativeQA  (Kočiský 
et al. 2018)

Question answering about entire books and 
movie scripts.

Qasper  (Dasigi et al. 
2021)

Question answering over research papers.

QuALITY  (Pang et al. 
2021)

Multiple-choice questions over long articles and 
stories.

Contract NLI  
(Koreeda and Manning 
2021)

Natural language inference over non-disclosure 
agreements.

COQA  (Reddy et al. 
2019)

CoQA: A Conversational Question Answering 
Challenge.

https://www.zero.scrolls-benchmark.com/


Step 1: Generate an initial answer

"""Story:
{context}

You are given a story, which can be either 
a novel or a movie script, and a question. 
Answer the question as concisely as you 
can, using a single phrase if possible.

Question and Possible Answers:
{question}

Answer:

"""

"""Article:
{context}

"You are given a scientific article and a question. Answer the"
" question as concisely as you can, using a single phrase or"
" sentence if possible. If the question cannot be answered 
based"
" on the information in the article, write 'unanswerable'. If 
the"
" question is a yes/no question, answer 'yes', 'no', or"
" 'unanswerable'."

Question:
{question}

Answer:

"""



AutoMix: Idea Sketch 

● Step 1: Generate an initial answer with the SLM 

● Step 2: Self-Verify the Answer 

● Step 3: Route to LLM if needed

<article…> Q: According to the 
article, when was tea 

discovered?
A: 1890 AD

Solve



Verification as Entailment 

• Given an input , context C, we have some output y’ generated by the SLM. 

• How do we check if y’ is good? 

• Intuition 
• If y’ is correct, the context may have some evidence to infer y’ 

• Solution 
• Frame self-verification as an entailment problem

x

<article…> Q: According to the 
article, when was tea 

discovered?
A: 1890 AD

Solve Self-Verify

But How?



Aside: Entailment

● Entailment determines if a given statement (hypothesis) logically follows 
from another statement (premise).

Premise:  All triangles have 3 sides. A 
is a triangle. 

Hypothesis: A has three sides.

Premise: I have a cat. 

Hypothesis: I have an elephant.

Entailed Not Entailed



Few-Shot Verification as Entailment 
Prompt = """Context: 

{context} 

--- 

Question: {question} 

AI Generated Answer: {generated_answer} 

Your task is to evaluate if the AI Generated Answer is correct, based on 

the provided context and question. 

Provide the judgement and reasoning for each case. 

### Task Form Format: 

Evaluation: Choose between <Correct, Incorrect, Unsure> 

### Task Form (Fill the portion below) 

 

Evaluation:"""



Prompt = """Context: 

{context} 

--- 

Question: {question} 

AI Generated Answer: {generated_answer} 

Your task is to evaluate if the AI Generated Answer is 

correct, based on the provided context and question. 

Provide the judgement and reasoning for each case. 

### Task Form Format: 

Evaluation: Choose between <Correct, Incorrect> 

### Task Form (Fill the portion below) 

 

Evaluation:""".format(...)

Correct

Incorrect

sample

P(v | x, y’, C)

Few-Shot Verification as Entailment 



Prompt = """Context: 

{context} 

--- 

Question: {question} 

AI Generated Answer: {generated_answer} 

Your task is to evaluate if the AI Generated Answer is 

correct, based on the provided context and question. 

Provide the judgement and reasoning for each case. 

### Task Form Format: 

Evaluation: Choose between <Correct, Incorrect> 

### Task Form (Fill the portion below) 

 

Evaluation:""".format(...)

Correct

Incorrect

sample

P(v | x, y’, C)

But we don’t 
have access 
to logits :( 

Draw 8 
samples — 
KV cache :) 

Step 2: Few-Shot Verification as Entailment 



Verifier Results



Examples of Verification

Context: Which country grows the most tea? The answer is India. It grows three times as much as China. Which country drinks the most tea? It's 
neither China nor Japan. It's Great Britain. […] In general, there are two kinds of tea. Black tea and green tea. […] One customer put the bag into a 
pot. Then he just poured hot water over it. And the tea bag was born. Shen Nong was the first to drink tea. (Shen was a Chinese emperor.) This was 
about 2737 B.C. Shen had bad digestion. So he drank several cups of hot water daily[…] Tea became the drink of China.

Question: When did Shen Nong drink tea?

Generated Answer (by LLAMA2-13b): He took it in 1990.

Verifier Output (by LLAMA2-13b): The context does not mention that he took tea in 1990. The AI generated answer is Incorrect.

Context: …

Question: Who was artist consider to be political cartoonist?

Generated Answer (by LLAMA2-13b): Honoré Daumier.

Verifier Output (by LLAMA2-13b): The context specifically mentions the artist Honoré Daumier as a political cartoonist. Verification Decision: The AI 
generated answer is Correct.



● Step 1: Generate an initial answer with the SLM 

● Step 2: Self-Verify the Answer 

● Step 3: Route to LLM if needed

<article…> Q: According to the 
article, when was tea 

discovered?

AutoMix: Idea Sketch 

A: 1890 AD

Solve Self-Verify

P(v ∣ Q, A.D. 1890, <article>)



● Step 1: Generate an initial answer with the SLM 

● Step 2: Self-Verify the Answer 

● Step 3: Route to LLM if needed

AutoMix: Idea Sketch 

<article…> Q: According to the 
article, when was tea 

discovered?
A: 1890 AD

A: 1890 AD

A: 2737 BC

Solve Self-Verify

P(v ∣ Q, A.D. 1890, <article>) ≥ 0 . 5

P(v ∣ Q, A.D. 1890, <article>) < 0 . 5

First attempt for routing: threshold @ 0.5



• Every query has a cost, and we are calling SLM 
twice. How do we measure performance per 
unit cost? 

• Are we doing better than just randomly mixing 
models? 

• Incremental Benefit Per (unit) Cost

<article…> Q: According to the 
article, when was tea 

discovered?
A: 1890 AD

A: 1890 AD

A: 2737 BC

Solve Self-Verify



Incremental Benefit Per Cost: Intuition

 Method 1

Method 2
Method 1 is better, as we are 
getting > performance  
at a cost expected with 
random mixing. 



● Costs: Small Model = CS,  Large Model = CL 

● Performance: Small Model = PS,  Large Model = PL 

● How much do we gain by adding one unit cost in terms of performance? 

● Incremental Benefit Per Unit Cost (IBC) == Slope 

○   

○    

○  

○  

IBCBASE =
PL − PS

CL − CS

IBC(M1) =
PM1

− PS

CM1 − CS

IBC(M2) =
PM2

− PS

CM2 − CS

ΔIBC(M ) =
IBC(M ) − IBCBASE

ibcBASE
× 100

Incremental Benefit Per Cost

 M1

M2

● Are we above or below the 
SLM/LLM cost 
performance curve and by 
how much?



Results



Results with Majority Voting



Routing Decision

● The verifier is not consistently good 
● Prevailing wisdom: bimodal distribution of queries 

● Difficult: SLM output is suboptimal — route 
● Easy: SLM output is good — don’t route 

● Misses a critical third mode: hopeless queries!



Routing Decision

Hopeless!
Already

 Good!

Route! Test

Train

Mean F1 difference (LLM(f1) - SLM(f1))
LLM(F1) - SLM(F1) 
            (gain)

Verifier Probability



Improving Verification

● How can we improve verification? 

● Need to verify the verifier — meta-verification!

<article…> Q: According 
to the article, when was A: 1890 AD

A: 1890 AD

A: 2737 BC

Verified: 1890 AD (p=0.55)

Solve

Self-Verify Meta-Verify
Verifier 
Trusted.

Verifier 
Untrusted. 


Consulting LLM.



Results with POMDP

Helps with cases 
where a simple 
threshold won’t cut it!



Extend to Three Models



AutoMix

● Context-Grounded Self-Verification, then route to a larger model 

● Meta-verification to fix noisy verification 

● Measure using incremental benefit per cost

<article…> Q: According 
to the article, when was A: 1890 AD

A: 1890 AD

A: 2737 BC

Verified: 1890 AD (p=0.55)

Solve

Self-Verify Meta-Verify
Verifier 
Trusted.

Verifier 
Untrusted. 


Consulting LLM.



Self-Enhancing Text Generation and Reasoning

● Research Goal  
● Stateful Inference 
● Giving Machines a Deep Thinking Mode — trading inference time compute for effective reasoning 

● Ingredients 
● Reacting to Feedback + Generating Feedback (Neurips 2023) 

● Self-Improvement 

● Memory to prevent repeated mistakes (EMNLP 2022, NAACL 2022) 

● Tool Augmentation (ICML 2023, EMNLP 2022) 
● Leveraging external input 
● Specialized computation



MemPrompt

79

Madaan* and Tandon* et al. EMNLP 2022



● Olivia has $23. She bought five bagels for $3 each. How much money does she have left? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison with CoT:


● The language model is responsible for generating a high-level plan that is executed to derive the answer


● The results are obtained after running the program 
 

Olivia had 23 dollars. 5 bagels for 3 
dollars each will be dollars. So she has 
dollars left.

CoT

def solution(): 

   money_initial = 23 

   bagels = 5 

   bagel_cost = 3 

   money_spent = bagels * bagel_cost 

   money_left = money_initial - money_spent 

   result = money_left 

   return result

PaL

80Gao*, Madaan*, Zhou* et al. ICML 2023

Program-aided Language Models
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Program-aided Language Models



What’s next? (Opinion)

● Resurgence of techniques for getting more out of a fixed language model 
during inference  
● Search, Planning, Self-Verification, Self-Refinement 
● GOFAI + LMs 

● Current research focus: 
● LMs that can solve challenging code reasoning tasks in the real world 
● Hyper-personalized LMs 
● Learning from a few mistakes



Self-Enhancing Text 
Generation and Reasoning

83

Automatically Mixing Language ModelsImproving LLM outputs without 
human-in-the-loop


