

Carnegie Mellon University Language Technologies Institute

Neural Language Modeling for Contextualized Temporal Graph Generation

Aman Madaan and Prof. Yiming Yang

Outline

- Temporal Graph Generation
- Methodology
- Experiments
- Conclusion

Temporal Graph Generation Introduction

- Given a document D, extract a graph G(V, E) where the nodes V are the events and the edges E are temporal relations.
- Introduced in Tempeval-3 (UzZaman et al. 2013).
- Applications include topic detection and tracking, information extraction, parsing of clinical records, discourse analysis, and question answering.

Temporal Graph Generation Example

Markovic, Radomir the former head of Serbian intelligence under Slobodan Milosevic, was jailed for seven years for covering theattempted up murder of a leading opposition politician in a 1999 car crash. Markovic, who been has imprisoned since 2001 for revealing state secrets, had denied there was ever a plot to kill Vuk Draskovic, the opposition leader, who survived the crash with minor injuries. Mr. Draskovic's brother-in-law and three others traveling in a convoy with him were killed.

Document (D)

Temporal Graph Generation Prior Work

- **CAEVO** (Chambers et al. 2014), and **Cogcomptime** (Ning et al. 2018) Multi-stage approach (dependency parsing, event extraction, relation)
 - classification, etc.)
 - Different specialized system (rule based or statistical) for each stage, cascading errors.
 - Developed using a small corpus (36 documents for CAEVO, 276 for Cogcomptime).
- Lack of hand-labeled corpora is a major bottleneck in using latest developments in fine-tuning large scale language models on the Task.

Temporal Graph Generation Task Definition

- G(V, E) is the temporal graph corresponding to the given document D.
- $r(e_p, e_q) \in \mathbf{E}$ is a temporal relation between events e_p and e_q .
- C_r be the set of sentences in the document **D** that contains the events e_p or e_q or are adjacent to them.
- We tackle two tasks of increasing complexity.
- Node generation (Task 1)
 - Given the context C_r , source event e_p , and a temporal relation r, generate the target event e_q .
- Graph Generation (Task 2)
 - Given a document D, generate a temporal graph G.

Methodology

Temporal Graph Generation

Data Preparation

Fine-tuning

Dataset Preparation

Dataset Preparation Source

- We use the New York Times Corpus to collect a dataset of document-graph pairs.
- 1.8 million articles between 1987 2007, each article has a hand-assigned descriptive term.
- Filter articles related to bombing, terrorism, murder, riots, hijacking, assassination, kidnapping, arson, vandalism, serial murder, manslaughter, extortion.
- ~90k articles total.

Descriptor	%Article
Terrorism	23.69
Murders and attempted murders	14.57
US International Relations	10.28
US armament and defense	9.72
airlines and airplanes	9.32
world trade center (nyc)	8.77
demonstrations and riots	8.38
hijacking	8.38
politics and government	3.63
bombs and explosives	3.25

Dataset Preparation Generating supervised data with CAEVO

- Use CAEVO (Chambers et al., 2014) to extract a temporal graph for each document.
- Scaleable: need to label over ~90k documents
- Noisy verbs: ~10% of all the events were said
- Relations extracted with ~0 confidence
- Extract events as standalone verbs, adds ambiguity X
 - A *killed* B, after which C *killed* A \rightarrow after(killed, killed)

Event verb	Raw frequency	%
said	647685	
say	57667	
had	47320	
killed	43369	
told	42983	
found	41733	
made	40544	
war	35257	
get	30726	
make	29407	

1.0

0.8

Dataset Preparation Pruning and post-processing

- and Martí 2010)
 - \bullet "put", "set", "take", iii) reporting: "argue", "claim", "say", "suggest", "tell"
- 2008)
 - A killed B, after which C killed A \rightarrow after(C killed A, A killed B) \bullet
- based extractions. Relation set: before, after, is included, includes, simultaneously

<u>Remove verbs</u> that have i) a low-idf, are ii) light or reporting (Liu et al. 2018; Recasens, Hovy,

i) low idf: "said", "say", "had", "made", "told", ii) light: "appear", "be", "become", "do", "have", "seem", "get", "give", "go", "have", "keep", "make",

<u>Augment each verb</u> with the corresponding noun phrase and object (Chambers and Jurafsky

<u>Drop relations</u> that have a confidence of < 0.50, all the vague relations, retain all the rule-

Dataset Preparation Clustering Event Communities

- **Observation**
 - density.
 - Typically arise from different topics in the narrative.
 - Each of these sub-graphs refers to a certain parts of the document.
 - Use this property to ground each sub-graph in its proper context.
- **Our** approach \bullet

 - Let D_1, D_2, \ldots, D_n be the corresponding parts in the document.
 - Add each of (D_i, G_i) to the training data.

• Temporal graph typically has several sub-graphs that are either completely disconnected or have high intra-link

• Divide a temporal graph G into sub-graphs induced by event communities G_1, G_2, \dots, G_n (using Newman et al. 2004).

Dataset Preparation Clustering Event Communities

Dataset Preparation Encoding Graphs

- We use DOT (Gansner, Koutsofios, and North 2006) to represent each graph as a string.
- The edges are listed in the order in which their constituent nodes appear in the document


```
digraph {
"Roma clashed" -> arrests [label = before];
"excessive force used" -> "Roma clashed" [ label = after ];
"excessive force used" -> arrests [ label = simultaneously ];
```

Fine-tuning

- The training data for both Tasks 1 and 2 comprises of tuples $\mathcal{D} = \{(x_i, y_i)\}_{i=1}^N$. ullet
- We aim to estimate the distribution $p_{\theta}(\mathbf{y}_i \mid \mathbf{x}_i)$ •

•
$$\mathscr{L}_{\text{masked}}(\mathscr{D}) = -\sum_{i=1}^{|\mathscr{D}|} \sum_{j=1}^{|x_i| + |y_i|} m_{i,j} * \log(p_{\theta}(u_{i,j}))$$

•
$$u_i = x_i || y_i$$

$$m_{i,j} = \begin{cases} 0 & \text{if } u_{i,j} \in \{x_i\} \\ 1 & \text{otherwise} \end{cases}$$

We experiment with LSTM and GPT-2 to parameterize p_{θ}

 $|\boldsymbol{u}_{i,<j}))$

Experiments

Experiments Datasets

• **TG-Gen:** Test split of our dataset.

 TB-Dense: A hand-labeled corpus documents from mixed domains, de TimeBank-Dense (Cassidy et al. 20⁻

	Task	Split	#Samples
of 36	Task 1	train	4,260,328
	Task 1	valid	542,994
	Task 1	test	541,844
erived from	Task 1	total	5,345,166
14).	Task 2	train	709,929
-	Task 2	valid	89,407
	Task 2	test	91,341

Task 2

TG-Gen Dataset Statistics

890,677

total

Experiments GPT-2 and Baselines

• GPT-2

- GPT-2 medium (355M parameters), 24 layers, hidden-size of 1024, 16 attention heads.
- Fine-tuned using masked language modeling loss (probability of graph tokens given the text), samples drawn using nucleus sampling (Holtzman et al. 2019).

• LSTM

 Bidirectional encoder, uni-directional decoder (2-layers each), embeddings initialized with 300-dim Glove.

• CAEVO

• Use to compare the performance of our system on TB-Dense.

Experiments **Task Definition**

- Node generation (Task 1)
 - Let $r(e_p, e_q) \in E$, C_r be the set of sentences in the document **D** that contains the events e_p or e_q or are adjacent to them.
 - Given the context C_r , source event e_p , and a relation r, generate the event e_q .
- **Graph Generation (Task 2)**
 - Given a document **D**, generate a temporal graph **G**

Results Node Generation (TG-Gen)

GPT-2 w/o CTX LSTM GPT-2

Results Node Generation (TB-Den: hand-labeled, out-domain)

Results Graph Generation: Metrics

- BLEU: String metric to evaluate the string representations of the graphs
- Isomorphism (ISO), graph edit distance (GED), average degree, size of the node and edge sets: To compare the graph structures
- Edge and node set precision (P), recall (R), F-score (F1)
- DOT%: % of generated graphs which are valid DOT files

Results Graph generation: TG-Gen

Results Graph generation: TB-Den

GPT-2

Conclusion

- reasoning over events to fine-tune language models.
- pairs.
- language models for our goal.
- traditional IE techniques.

• Difficult to of obtain large corpora of human-annotated graphs for temporal

 We develop a data generation pipeline that uses existing IE/NLP/clustering techniques for automated acquisition of a large corpus of document-graph

 We propose a new formulation of the graph generation task as a sequence-tosequence mapping task, allowing us to leverage and fine-tune pre-trained

• Our experiments strongly support the effectiveness of the proposed approach, which significantly outperforms strong baselines, and is competitive with

Thanks!