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Code Generation Models
• Completing code

• Generating code from natural language description
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Codex - a Strong Code LLM

• Weights initialized with GPT-3, and then trained on 100B tokens of code


•

Code completion is great, but is that all?
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Can we leverage Codex to 
perform natural-language-centric 
tasks?

Yes!
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CoCoGen: Language Models of Code 
are few-shot Commonsense Learners
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https://github.com/reasoning-machines/CoCoGen

https://github.com/reasoning-machines/CoCoGen


Structured Commonsense Reasoning

https://proscript.allenai.org/ 7

Find recipe

Gather Ingredients Preheat oven at 375F

Mix ingredients

Put the cake batter into oven

Take the cake out after 30 min

• Natural language input (e.g., scenario) 

• Structured output (e.g., plan graph, reasoning graph)

Bake a cake



Structured Commonsense Reasoning
• Natural language input (e.g., scenario) 

• Structured output (e.g., plan graph, reasoning graph)

https://proscript.allenai.org/ https://explagraphs.github.io/8

Goal: Bake a cake



Leveraging Language Models for the Task

"find recipe" -> "gather ingredients”;

"gather ingredients" -> "mix ingredients”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven"; 

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"


Reality
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Goal: Bake a cake

Expectation



Leveraging Language Models for the Task
• Need to generate a graph but … language models can only generate strings


• Workaround


• Flatten the graph as a string


• Train a seq2seq model

"find recipe" -> "gather ingredients”;

"gather ingredients" -> "mix ingredients”;

"gather ingredients" -> "preheat oven at 375F”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven"; 

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"
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Reality



Leveraging Language Models for the Task
• Issues with the workaround


• Representations are unnatural


• The structure information might not persist 
 
 
 
 
 

• We want structures, not strings

⁉Are the two 
mix ingredients the 
same?

⁉What happens with 
long range 
dependencies?

"find recipe" -> "gather ingredients"; 

“gather ingredients" -> "mix ingredients”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven"; 

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"
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Code is a Natural Way to Represent Structures

• Programs inherently encode structures and dependencies  

• Various implementation of the same structure 


• Opportunities to perform alternative representations and find the 
best representation

❌ Force LLMs on text to be fine-tuned on structured commonsense

✅ Adapt LLMs on code to structured commonsense reasoning
💡
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class Tree:

    goal = "bake a cake”


    def __init__(self):

        # nodes

        self.find_recipe = Node()

        self.gather_ingredients = Node()

        self.mix_ingredients = Node()

        self.preheat_oven_at_375F = Node()


        # add edges

        self.find_recipe.children = 

        [self.gather_ingredients, self.preheat_oven_at_375F]

        self.gather_ingredients.children =

        [self.mix_ingredients, self.preheat_oven_at_375F]


CoCoGen
• Step 1: Translate target structure to code

Proscript: generate a script graph given a goal
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CoCoGen
• Step 2: Use code-generation model to complete the code for a new plan

class Tree:

    goal = “plant herbs in your kitchen garden"


    def __init__(self):

    

[Model generates]

Test input

Input 1 

Output 1 

Input 2

Output 2 

… 

class Tree:

    goal = "bake a cake”


    def __init__(self):


[Model generates]

        # nodes

        self.find_recipe = Node()

        self.gather_ingredients = Node()

        self.mix_ingredients = Node()

        self.preheat_oven_at_375F = Node()


        # add edges

        self.find_recipe.children = 

        [self.gather_ingredients, self.preheat_oven_at_375F]

        self.gather_ingredients.children =

        [self.mix_ingredients, self.preheat_oven_at_375F]
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Script Generation Results on ProScript
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CoCoGen generates better scripts (in NL) 
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Translate your tasks to programs: ProPara

Propara: predict the location of a given set of entities after each step 
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https://allenai.org/data/propara



Results on Propara

The state-of-the-art few-shot in-context learning method on Propara
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But why does it work?
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Hypothesis 1: Corpus
• Pre-training corpus for code models contains procedural knowledge 

useful for these tasks, e.g., game engine


Code snippet taken from https://github.com/allenai/ScienceWorld/19
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class BakeACake:

    def __init__(self) -> None:

        self.find_recipe = Node()

        self.gather_ingredients = Node()

        self.mix_ingredients = Node()

        self.find_recipe = Node()

        self.preheat_oven_at_375f = Node()

        self.put_cake_batter_into_oven = Node()

        self.take_cake_out_after_30_min = Node()


        self.find_recipe.children = [self.gather_ingredients, 
self.preheat_oven_at_375f]

        self.gather_ingredients.children = [self.mix_ingredients]

        self.mix_ingredients.children = [self.put_cake_batter_into_oven]

        self.preheat_oven_at_375f.children = 
[self.put_cake_batter_into_oven]

        self.put_cake_batter_into_oven.children = 
[self.take_cake_out_after_30_min]


Hypothesis 2: Training

Long-range context is probably more consistently useful in code modeling than it is in NL modeling.



PaL: Program Aided Language Models
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Motivating Example
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Q: Shawn has 5 toys. For Christmas, he got 2 toys each from his mom 
and dad. How many toys does he have now?

A: The 
answer is 9 
toys

http://progress_bar_id


Fine-tuning
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Q: Shawn has five toys. For Christmas, he 
got two toys each from his mom and dad. How 
many toys does he have now?

A: The answer is 9 toys

θ

Q: If there are 3 cars in the parking lot 

and 2 more cars arrive, how many cars are in 

the parking lot?

Q: Leah had 32 chocolates and her sister had 

42. If they ate 35, how many pieces do they 

have left in total?

A: The answer is 5 
cars.

A: The answer is 39 
pieces.θ

θ

Train/Fine-tune

Test

http://progress_bar_id


Few-shot prompting (in-context learning/autocomplete)
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Q: If there are 3 cars in the parking lot and 2 

more cars arrive, how many cars are in the parking 

lot?

A: The answer is 5 cars.


Q: Leah had 32 chocolates and her sister had 42. If 

they ate 35, how many pieces do they have left in 

total?

A: The answer is 39 pieces.


Q: Shawn has five toys. For Christmas, he got two 
toys each from his mom and dad. How many toys does 
he have now?

A: 

𝜣 The answer is 9 toys

Prompt

Design of prompt 

(prompt engineering) is critical 

http://progress_bar_id


Chain of thought prompting
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Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many 

cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.

A: The answer is 5 cars.


Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many 

pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in 

total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.


Q: Shawn has five toys. For Christmas, he got two toys each from his mom and 
dad. How many toys does he have now?

T:  

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 
Bosma, Ed Chi, Quoc Le, and Denny Zhou. "Chain of 
thought prompting elicits reasoning in large language 
models." arXiv preprint arXiv:2201.11903 (2022). 

Adds a thought to the prompt 
that explains the answer - the 
thought process. 

http://progress_bar_id


Chain of thought prompting is extremely effective
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http://progress_bar_id


Potential Shortcomings of Text-based Explanations

• The language model is responsible for both planning the solution and execution the solution. 
• What happens if the magnitude of the numbers is increased.
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Q: If there are 3 cars in the parking lot and 2 more 
cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3 
+ 2 = 5.

A: The answer is 5 cars.

Q: If there are 3 cars in the parking lot and 2 more 
cars arrive, how many cars are in the parking lot?

A: There are originally 3217 cars. 2319 more cars 
arrive. 3217 + 2319 = 5536.

A: The answer is 5536 cars.



Potential Shortcomings of Text-based Explanations
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• The language model is responsible for both planning the solution and execution the solution. 
• What happens if the magnitude of the numbers is increased.

0

25

50

75

100

PaLM 62B Larger NumbersLarger Numbers PaLM 540B



Potential Shortcomings of Text-based Explanations

• The answers could be correct even if the explanation is wrong
• Explanations as programs doesn’t eliminate it

29

From Wei et al. 2022



Overview
● Olivia has $23. She bought five bagels for $3 each. How much money does she have 

left? 

● PaL

 
 

Comparison with CoT:

● The language model is responsible for generating a high-level plan that is executed to derive the answer

● The results are obtained after running the program 
 

def solution():


   money_initial = 23


   bagels = 5


   bagel_cost = 3


   money_spent = bagels * bagel_cost


   money_left = money_initial - money_spent


   result = money_left


   return result

○ Olivia had 23 dollars. 5 bagels 
for 3 dollars each will be dollars. 
So she has dollars left. 

•



Improves Solve Rate for Multiple Maths Reasoning Tasks
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Self-consistency style decoding
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GSM-8k Hard
● We generate a hard version for each question in GSM:

Bill is signing up for a new streaming service. He got a special 
introductory deal where the first 6 months were $8 a month, then it 
went up to the normal price of $1586877.9938 a month. After 8 
months of the normal rate, the service increased its price to $14 a 
month. How much do 2 years of the service cost him?


A: 44432531.8264

Bill is signing up for a new streaming service. He got a 
special introductory deal where the first 6 months 
were $8 a month, then it went up to the normal price 
of $12 a month. After 8 months of the normal rate, the 
service increased its price to $14 a month. How much 
do 2 years of the service cost him?

A: 284

● Plug-and-play

○ Adapts to domains: GSM-Hard



GSM-8k Hard
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Colored Objects
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On the table, you see two red puzzles, two grey pencils, two grey pairs of sunglasses, two grey 
bracelets, and two red bracelets. If I remove all the puzzles from the table, how many grey objects 
remain on it?
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Let's think step by step. According 
to this question, there are two red 
puzzles, two grey pencils, two grey 
pairs of sunglasses, two grey 
bracelets, and two red bracelets. If 
we remove all the puzzles from the 
table, there are two grey pencils, 
two grey pairs of sunglasses, and 
two grey bracelets. The number of 
grey objects that remain on the 
table is five. So the answer is five.

# Put objects into a list to record ordering

objects = []

objects += [('puzzle', 'red')] * 2

objects += [('pencil', 'grey')] * 2

objects += [('sunglasses', 'grey')] * 2

objects += [('bracelet', 'grey')] * 2

objects += [('bracelet', 'red')] * 2


# Remove all puzzles

objects = [object for object in objects if object[0] != 'puzzle']


# Count number of grey objects

grey_objects = [object for object in objects if object[1] == 'grey']

len(grey_objects)




Repeat Copy

36

Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels

cars gas all cars eat gas cars gas all cars eat gas


def solution():

    """Q: Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels"""

    result = []

    tmp = ["all", "cars", "eat", "gas"]

    for i in range(1, 5):

        if i % 2 == 0:

            result.extend(tmp)

        else:

            for word in tmp:

                if word[0] not in "aeiou":

                    result.append(word)

    return " ".join(result)

>>> cars gas all cars eat gas cars gas all cars eat gas


I have to repeat "all cars eat gas" four 
times. That is "all cars eat gas all cars eat 
gas all cars eat gas all cars eat gas". On 
the odd times, I have to drop words that 
start with vowels. That is "all cars eat 
gas all cars eat gas all cars eat gas all 
cars eat gas". The answer is "all cars eat 
gas all cars eat gas all cars eat gas all 
cars eat gas"



Algorithmic 
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Language Models of Code Are Few-shot Reasoners
Event Reasoning
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Language Models of Code Are Few-shot Reasoners
Embodied Control
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Next Steps
• What do we do with all the finetuned models?
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# Question: a complicated question

def solution(question):

    

    # step 1: decompose the question into smaller questions

    decomposed_questions = decompose(question)

    

    # step 2: call a smaller, specialized model

    small_model_result = 
small_specialized_model(decomposed_questions)

    

    # step 3: do some post-processing

    post_processed_result = post_process(small_model_result)

    

    return post_processed_result

    




Language Models of Code are few-shot Reasoners

• TLDR: if you can convert your task to code, try it! 

https://github.com/reasoning-machines/CoCoGen

https://github.com/reasoning-machines/pal


https://github.com/reasoning-machines/prompt-lib
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https://github.com/madaan/CoCoGen
https://github.com/reasoning-machines/pal
https://github.com/reasoning-machines/prompt-lib

