
Aman Madaan, 12/09/2022

Language Models of Code are
Few-shot Reasoners
UIUC NLP Seminar

1

Code Generation Models
• Completing code

• Generating code from natural language description

2

3

Codex - a Strong Code LLM

• Weights initialized with GPT-3, and then trained on 100B tokens of code

•

Code completion is great, but is that all?

4

Can we leverage Codex to
perform natural-language-centric
tasks?

Yes!

5

CoCoGen: Language Models of Code
are few-shot Commonsense Learners

6

Shuyan Zhou Uri Alon Graham NeubigYiming YangAman Madaan

https://github.com/reasoning-machines/CoCoGen

https://github.com/reasoning-machines/CoCoGen

Structured Commonsense Reasoning

https://proscript.allenai.org/ 7

Find recipe

Gather Ingredients Preheat oven at 375F

Mix ingredients

Put the cake batter into oven

Take the cake out after 30 min

• Natural language input (e.g., scenario) 

• Structured output (e.g., plan graph, reasoning graph)

Bake a cake

Structured Commonsense Reasoning
• Natural language input (e.g., scenario) 

• Structured output (e.g., plan graph, reasoning graph)

https://proscript.allenai.org/ https://explagraphs.github.io/8

Goal: Bake a cake

Leveraging Language Models for the Task

"find recipe" -> "gather ingredients”;

"gather ingredients" -> "mix ingredients”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven";

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"

Reality

9

Goal: Bake a cake

Expectation

Leveraging Language Models for the Task
• Need to generate a graph but … language models can only generate strings

• Workaround

• Flatten the graph as a string

• Train a seq2seq model

"find recipe" -> "gather ingredients”;

"gather ingredients" -> "mix ingredients”;

"gather ingredients" -> "preheat oven at 375F”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven";

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"

10

Reality

Leveraging Language Models for the Task
• Issues with the workaround

• Representations are unnatural

• The structure information might not persist 
 
 
 
 
 

• We want structures, not strings

⁉Are the two
mix ingredients the
same?

⁉What happens with
long range
dependencies?

"find recipe" -> "gather ingredients";

“gather ingredients" -> "mix ingredients”;

"find recipe" -> "preheat oven at 375F”;

"preheat oven at 375F" -> "put the cake batter into oven";

"mix ingredients" -> "put the cake batter into oven";

"put the cake batter into oven" -> "take the cake out after 30 min"

11

Code is a Natural Way to Represent Structures

• Programs inherently encode structures and dependencies

• Various implementation of the same structure

• Opportunities to perform alternative representations and find the
best representation

❌ Force LLMs on text to be fine-tuned on structured commonsense

✅ Adapt LLMs on code to structured commonsense reasoning
💡

12

class Tree:

 goal = "bake a cake”

 def __init__(self):

 # nodes

 self.find_recipe = Node()

 self.gather_ingredients = Node()

 self.mix_ingredients = Node()

 self.preheat_oven_at_375F = Node()

 # add edges

 self.find_recipe.children =

 [self.gather_ingredients, self.preheat_oven_at_375F]

 self.gather_ingredients.children =

 [self.mix_ingredients, self.preheat_oven_at_375F]

CoCoGen
• Step 1: Translate target structure to code

Proscript: generate a script graph given a goal

13

CoCoGen
• Step 2: Use code-generation model to complete the code for a new plan

class Tree:

 goal = “plant herbs in your kitchen garden"

 def __init__(self):

[Model generates]

Test input

Input 1

Output 1

Input 2

Output 2

…

class Tree:

 goal = "bake a cake”

 def __init__(self):

[Model generates]

 # nodes

 self.find_recipe = Node()

 self.gather_ingredients = Node()

 self.mix_ingredients = Node()

 self.preheat_oven_at_375F = Node()

 # add edges

 self.find_recipe.children =

 [self.gather_ingredients, self.preheat_oven_at_375F]

 self.gather_ingredients.children =

 [self.mix_ingredients, self.preheat_oven_at_375F]

14

Script Generation Results on ProScript

20

25

30

35

40

BLEU Rouge-L

T5-xxl (full) Davinci(15) CoCoGen(15)

-0.31

-0.283

-0.255

-0.228

-0.2

BLEURT

CoCoGen generates better scripts (in NL)
15

Translate your tasks to programs: ProPara

Propara: predict the location of a given set of entities after each step
16

https://allenai.org/data/propara

Results on Propara

The state-of-the-art few-shot in-context learning method on Propara

0

17.5

35

52.5

70

F1

Curie Davinci CoCoGen

17

But why does it work?

18

Hypothesis 1: Corpus
• Pre-training corpus for code models contains procedural knowledge

useful for these tasks, e.g., game engine

Code snippet taken from https://github.com/allenai/ScienceWorld/19

20

class BakeACake:

 def __init__(self) -> None:

 self.find_recipe = Node()

 self.gather_ingredients = Node()

 self.mix_ingredients = Node()

 self.find_recipe = Node()

 self.preheat_oven_at_375f = Node()

 self.put_cake_batter_into_oven = Node()

 self.take_cake_out_after_30_min = Node()

 self.find_recipe.children = [self.gather_ingredients,
self.preheat_oven_at_375f]

 self.gather_ingredients.children = [self.mix_ingredients]

 self.mix_ingredients.children = [self.put_cake_batter_into_oven]

 self.preheat_oven_at_375f.children =
[self.put_cake_batter_into_oven]

 self.put_cake_batter_into_oven.children =
[self.take_cake_out_after_30_min]

Hypothesis 2: Training

Long-range context is probably more consistently useful in code modeling than it is in NL modeling.

PaL: Program Aided Language Models

21

Shuyan Zhou* Uri Alon Graham NeubigYiming YangAman Madaan*

http://reasonwithpal.com/

Luyu Gao* Pengfei Liu Jamie Callan

* Equal Contribution

Motivating Example

22

Q: Shawn has 5 toys. For Christmas, he got 2 toys each from his mom
and dad. How many toys does he have now?

A: The
answer is 9
toys

http://progress_bar_id

Fine-tuning

23

Q: Shawn has five toys. For Christmas, he
got two toys each from his mom and dad. How
many toys does he have now?

A: The answer is 9 toys

θ

Q: If there are 3 cars in the parking lot

and 2 more cars arrive, how many cars are in

the parking lot?

Q: Leah had 32 chocolates and her sister had

42. If they ate 35, how many pieces do they

have left in total?

A: The answer is 5
cars.

A: The answer is 39
pieces.θ

θ

Train/Fine-tune

Test

http://progress_bar_id

Few-shot prompting (in-context learning/autocomplete)

24

Q: If there are 3 cars in the parking lot and 2

more cars arrive, how many cars are in the parking

lot?

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If

they ate 35, how many pieces do they have left in

total?

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two
toys each from his mom and dad. How many toys does
he have now?

A:

𝜣 The answer is 9 toys

Prompt

Design of prompt

(prompt engineering) is critical

http://progress_bar_id

Chain of thought prompting

25

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many

cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many

pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in

total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?

T:

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. "Chain of
thought prompting elicits reasoning in large language
models." arXiv preprint arXiv:2201.11903 (2022).

Adds a thought to the prompt
that explains the answer - the
thought process.

http://progress_bar_id

Chain of thought prompting is extremely effective

26

http://progress_bar_id

Potential Shortcomings of Text-based Explanations

• The language model is responsible for both planning the solution and execution the solution.
• What happens if the magnitude of the numbers is increased.

27

Q: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?

A: There are originally 3 cars. 2 more cars arrive. 3
+ 2 = 5.

A: The answer is 5 cars.

Q: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?

A: There are originally 3217 cars. 2319 more cars
arrive. 3217 + 2319 = 5536.

A: The answer is 5536 cars.

Potential Shortcomings of Text-based Explanations

28

• The language model is responsible for both planning the solution and execution the solution.
• What happens if the magnitude of the numbers is increased.

0

25

50

75

100

PaLM 62B Larger NumbersLarger Numbers PaLM 540B

Potential Shortcomings of Text-based Explanations

• The answers could be correct even if the explanation is wrong
• Explanations as programs doesn’t eliminate it

29

From Wei et al. 2022

Overview
● Olivia has $23. She bought five bagels for $3 each. How much money does she have

left? 

● PaL

 
 

Comparison with CoT:

● The language model is responsible for generating a high-level plan that is executed to derive the answer

● The results are obtained after running the program 
 

def solution():

 money_initial = 23

 bagels = 5

 bagel_cost = 3

 money_spent = bagels * bagel_cost

 money_left = money_initial - money_spent

 result = money_left

 return result

○ Olivia had 23 dollars. 5 bagels
for 3 dollars each will be dollars.
So she has dollars left.

•

Improves Solve Rate for Multiple Maths Reasoning Tasks

31

60

70

80

90

100

ASDIV GSM SVAMP AddSub MultiArith SingleEq SingleOp

CoT PaL

Self-consistency style decoding

32

GSM-8k Hard
● We generate a hard version for each question in GSM:

Bill is signing up for a new streaming service. He got a special
introductory deal where the first 6 months were $8 a month, then it
went up to the normal price of $1586877.9938 a month. After 8
months of the normal rate, the service increased its price to $14 a
month. How much do 2 years of the service cost him?

A: 44432531.8264

Bill is signing up for a new streaming service. He got a
special introductory deal where the first 6 months
were $8 a month, then it went up to the normal price
of $12 a month. After 8 months of the normal rate, the
service increased its price to $14 a month. How much
do 2 years of the service cost him?

A: 284

● Plug-and-play

○ Adapts to domains: GSM-Hard

GSM-8k Hard

0

17.5

35

52.5

70

GSM-Hard

CoT PaL

Colored Objects

35

On the table, you see two red puzzles, two grey pencils, two grey pairs of sunglasses, two grey
bracelets, and two red bracelets. If I remove all the puzzles from the table, how many grey objects
remain on it?

6

Let's think step by step. According
to this question, there are two red
puzzles, two grey pencils, two grey
pairs of sunglasses, two grey
bracelets, and two red bracelets. If
we remove all the puzzles from the
table, there are two grey pencils,
two grey pairs of sunglasses, and
two grey bracelets. The number of
grey objects that remain on the
table is five. So the answer is five.

Put objects into a list to record ordering

objects = []

objects += [('puzzle', 'red')] * 2

objects += [('pencil', 'grey')] * 2

objects += [('sunglasses', 'grey')] * 2

objects += [('bracelet', 'grey')] * 2

objects += [('bracelet', 'red')] * 2

Remove all puzzles

objects = [object for object in objects if object[0] != 'puzzle']

Count number of grey objects

grey_objects = [object for object in objects if object[1] == 'grey']

len(grey_objects)

Repeat Copy

36

Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels

cars gas all cars eat gas cars gas all cars eat gas

def solution():

 """Q: Repeat the phrase all cars eat gas four times. On the odd times, drop words that start with vowels"""

 result = []

 tmp = ["all", "cars", "eat", "gas"]

 for i in range(1, 5):

 if i % 2 == 0:

 result.extend(tmp)

 else:

 for word in tmp:

 if word[0] not in "aeiou":

 result.append(word)

 return " ".join(result)

>>> cars gas all cars eat gas cars gas all cars eat gas

I have to repeat "all cars eat gas" four
times. That is "all cars eat gas all cars eat
gas all cars eat gas all cars eat gas". On
the odd times, I have to drop words that
start with vowels. That is "all cars eat
gas all cars eat gas all cars eat gas all
cars eat gas". The answer is "all cars eat
gas all cars eat gas all cars eat gas all
cars eat gas"

Algorithmic

37

30

65

100

Colored Objects Penguins in a Table Date Understanding

CoT PaL

Language Models of Code Are Few-shot Reasoners
Event Reasoning

38

Language Models of Code Are Few-shot Reasoners
Embodied Control

39

Next Steps
• What do we do with all the finetuned models?

40

Question: a complicated question

def solution(question):

 # step 1: decompose the question into smaller questions

 decomposed_questions = decompose(question)

 # step 2: call a smaller, specialized model

 small_model_result =
small_specialized_model(decomposed_questions)

 # step 3: do some post-processing

 post_processed_result = post_process(small_model_result)

 return post_processed_result

Language Models of Code are few-shot Reasoners

• TLDR: if you can convert your task to code, try it!

https://github.com/reasoning-machines/CoCoGen

https://github.com/reasoning-machines/pal

https://github.com/reasoning-machines/prompt-lib

41

https://github.com/madaan/CoCoGen
https://github.com/reasoning-machines/pal
https://github.com/reasoning-machines/prompt-lib

