
Aman @ Yiming Yang’s Lab Seminar, 2/22/22

Recent progress in Neural Code
Generation

Code generation

Completing code

Generating code from  
natural language description

What makes code generation interesting?
• Programming language is language

• Sequence of tokens sampled from an underlying grammar (so does English)

• From a modeling perspective can be factorized auto regressively, no
difference on the surface

• Yet

• Syntax is much more restrictive (indentation, types)

• Long-form generations needed

• Specialized knowledge

• A single token has higher odds of disrupting everything

• Potential to be the first real-world, pervasive application of language generation models in the
next few years

p(code ∣ input)

Outline
• Part 1

• State of the art language models are impressive to the point that telling them apart from human text is difficult.
Does this progress translate to code-generation?

• Alphacode: SOTA in solving competitive programming problems (“better” than 54% humans)

• Treat code like other language

• Part 2

• Can we exploit key properties of code to improve over using language models alone?

• Using familiar techniques from NLP toolbox and PL

• Masked language objective when dealing with code

• Retrieval-augmented generation

• Backtranslation

• Syntax-guided generation

Competitive programming
• Given

• A new problem

• Few (~5) input - output test cases

• Generate 1 million programs, test
them on the 5 test cases

• Only 10k programs pass these 5
test cases

• Check solution on a larger number
of hidden test cases

• Widely used in hiring for CS
Taken from https://codeforces.com/

Alphacode
Introduction

• Competitive programming contests:
write program for a complex
requirement, test on O(10^4) test
cases. 

• Example

• Given two strings A and B, find if A
and B are palindromes

• Many competitive programming
websites

Alphacode is better than 72% of human participants at
codeforces.com

http://codeforces.com

Overview

Datasets
• Pre-training: essentially all publicly available code on Github, filter out files > 1000 characters ~ 715.1

GB

• Fine-tuning:

• Scraped codeforces.com

• Need dataset of (problem, correct solutions)

• Generated additional test cases by mutating, and checked for correctness

• Do not care about time complexity

• Architecture: encoder-decoder

• Number of parameters vary from 1B to 41B

• Shallow (8 layers) + wide (1500 tokens) encoder —> deep (56 layers) + narrow (768 tokens) decoder

• Code is shorter than program description and test cases

http://codeforces.com

Fine-tuning
Tags (meta-data about 

the problem)

Fine-tuning
Tricks

• Tempering to avoid overfitting:

• During training, divide the logits by T = 0.2 (<1)

• Causes sharper logits during training, but smoother logits during inference

• No explanation provided, but intuitively could be working as backprop penalizes overly confident predictions

• GOLD training objective to improve precision (added to the standard MLE gradient)

• The gradient for a token is up-weighted if it is already being predicted with a high confidence

Sampling and Filtering
• Sample 1M programs for a given problem, select 10

programs from this pool

• Done by randomly varying tags in the input +
changing the input temperature

• If one of the 10 solves the problem, consider it solved

• Step 1: Filter obviously wrong programs by using unit
tests  
(~99% discarded)

• Left with 10k

• Step 2: Cluster programs using artificially generated
test cases (key insight)

Filtering by clustering
• Let be a set of programs, be a set of inputs 

• If programs and have the same output for the given input set, they
belong to the same cluster

• We don’t have to care about correctness

• Programs that generate same output for the same input must be
semantically the same

• Sample one program per cluster

{p1, p2, …, pn} {x1, x2, …, xm}

pi pj

Main results

https://alphacode.deepmind.com/

Similar works

Model behind the outputs we saw on the first page

Outline
• Part 1

• State of the art language models are impressive to the point that telling them apart from human text is difficult.
Does this progress translate to code-generation?

• Alphacode: SOTA in solving competitive programming problems (“better” than 54% humans)

• Treat code like other language

• Part 2

• Can we exploit key properties of code to improve over using language models alone?

• Using familiar techniques from NLP toolbox and PL

• Masked language objective when dealing with code

• Retrieval-augmented generation

• Backtranslation

• Syntax-guided generation

Neurips 2021

Key idea

• Masked language modeling (MLM) for language drops tokens randomly 

• Too simple for programming languages, not very informative

• Syntax errors (e.g., missing “;”) might be easily corrected by the code

• Masking a variable once, but not everywhere, allows copying names

• Instead of MLM, they propose DOBF (de-obfuscation objective) that
leverages structure of programming languages

De-obfuscation

- Replace class, function, and variable names with special tokens, and train a model to recover them.

- Syntax related tokens are not masked out

- Model has to come up with meaningful variable and function names, which requires deep understanding of code semantics.

Implementation
• Encoder-decoder transformer based Seq2seq model with the new DOBF

objective (12 layers, 12 heads)

• Dataset: collect all publicly available code on Github, retain files with < 2000
tokens

Initializing with MLM helps further

Results

Qualitative Results
Completing matrix operations code

Neurips 2021 (Spotlight)

Introduction
• Task: complete a given piece of code

• where

• X is the input specification: class name, type of the
variables, other complete methods

• Y is a completion of X

• Key idea:

• Neurosymbolic attribute grammars: Use static
analysis and grammar to guide code generation

pΘ(Y ∣ X)

Model
• Let Z be the (latent) user intent behind the ambiguous incomplete code X 

•  

• : context encoder

• : program synthesizer

p(Y ∣ X) = ∫Z
p(Z ∣ X)p(Y ∣ Z)dZ

p(Z ∣ X)

p(Y ∣ Z)

Context encoder
• X: input or evidence

• Consists of method names, formal parameters, comments (7 types of “evidence”)

• Assume Z is Normal, X is sampled from Z 

• And thus:

•

• In summary, X (input) is used to generate parameters of normal from which Z is sampled. Each part of the input contributes individually to
sampling the latent variable

Program Synthesizer

•  

• : context encoder

• : program synthesizer

p(Y ∣ X) = ∫Z
p(Z ∣ X)p(Y ∣ Z)dZ

p(Z ∣ X)

p(Y ∣ X) Aside

Context-free grammar
• Set of production rules, where left-hand side is a non-terminals, and right-hand side is a combination of

terminals and non-terminals

S → aSa
S → bSb
S → ε

• Generative process:

• Start with a production, recursively expand non-terminals

• S → aSa → abSba → abba

• Parse trees

• If each rule is picked probabilistically, it’s called a P-CFG

• Aside: if the LHS contains a terminal the grammar is context sensitive

S → aSa
S → bSb
S → ε
abSba → abaaba

S

a aS

b bS

ε

Attribute grammars
• Context-free grammars + attributes associated with each symbol 

• Attribute grammar

• Attaches some auxiliary information with each symbol, and defines how the information flows as parsing
proceeds

• Each symbol gets inherited attributes and synthesized attributes

• Example 

S1 → aS2a [S1.value = S2.value * 3]
S1 → bS2b [S1.value = S2.value * 2]
S → ε [S.value = 5]

S

a a
S

b bS

ε

5

30

10

Program Synthesizer
• Generative process:

• where each of the is a symbol and its expansion

• Standard conditional distribution: PCFG conditioned by the input latent representation Z, and the
expansion so far

•

• Their work:

• where the extra term is supplied by the auxiliary grammar

• Key idea: inform the generation process with Auxiliary attributes of the program generated so far using a
static analyzer:

• Static analyzer: can infer the types of the method generated so far

Y = (S1, S2, …, Sn) Si

Y = ∏
i

P(Si ∣ S<i, Z)

Y = ∏
i

P(Si ∣ S<i, Z, A(Si)) A(Si)

Generation without attribute grammar

Input Output Grammar

Generation without attribute grammar

Y = ∏
i

P(Si ∣ S<i, Z)

Generation without attribute grammar

Generation with vanilla CFG

Generation with vanilla CFG

What is vanilla PCFG generation losing?
• Given the data, we can train a

PCFG guided generation model 

• There are some global constraints
of the code that are readily
available by static analysis 

• Type constraints, scope
constraints etc.

• Can make life of the model
easier

Attribute grammars can maintain useful auxiliary information

Generation with Attribute Grammar

Experiments

• Architecture: Tree-LSTM with 63M parameters

• However, they can only work on a subset of Java for which their grammar is
defined

• Training on 1.57M method bodies of java

• Randomly remove a method body, and try to complete it with their method
and baselines

• Evaluation based on key properties (compiler errors) of generated code

Results
Their method

without
attribute

grammar
(shown
earlier)

Their  
method

Results
• BLEU score is useless for comparing code

• Compare Jaccard score of API calls

ICLR 2022

Introduction
• Task: generating program from natural language description

• Setup: few-shot prompting - create a prompt from k examples

• Questions

• 1. How to select relevant examples for the prompt?

• 2. How to enforce additional syntactic constraints while decoding the output?

p u

{(ui, pi)}k
i=1

Which city has the
highest number of 
departing flights?

Selecting relevant examples for the prompt
Target similarity tuning

• Typical approach: Given a u (problem description), k examples find closest examples based on
 for some distance metric

•

• Problem: we want to retrieve similar code, not similar descriptions

• Similarity in descriptions may not translate to similarity in the output code

• Their approach:

•

• Where is similarity between the syntax trees

• Similarity function now needs to pay attention to the difference in the syntax trees

{(ui, pi)}k
i=1

fθ(ui, uj) fθ ∈ [0,1]

Lsim = Ei,j∼𝒟diff
fθ(ui, uj) − Ei,j∼𝒟sim

fθ(ui, uj)

Lsim = Ei,j∼𝒟[fθ(ui, uj) − S(pi, pj)]2

S(pi, pj) ∈ [0,1]

Selecting relevant examples for the prompt
Target similarity tuning

Constrained semantic decoding
• Unconstrained language models may produce wrong output when completing complex expressions

• Key idea: code is structured, can help using grammar

• Two layers: context-sensitive and context-free

• Context-free layer:

• Uses parser to restrict the set of next tokens

• Context-sensitive layer:

Completion Engine

• Instead of sampling from an unconstrained set, sample tokens that would keep the
program generated so far valid

• Let be the program decoded till current time step t

• Use a parser to find a list of production rules and possible token types that can
follow

• Let be the set of languages that can be completed to a valid program. Given a
string s, how to determine if it is in ?

•

pt

pt

Lc

Lc

Completion Engine

Results

ICML 2021

Overview
• Fix a given piece of incorrect code 
 

• No parallel data available 

• BUT:

• Large quantities of code online

• Compiler can check if the code is correct or not

Initialization with synthetic errors
• Let be a large corpus of code, and and be the correct and

incorrect splits.

• Introduce synthetic perturbations (random token drop/typos/punctuation
errors) in

•

• Train initial fixer f0 to go from bad to good, and initial breaker b0 to go from
good to bad

D Dgood Dbad

Dgood

Initialization with synthetic errors
Why is it not enough?

• Real and synthetic error distribution is different

Break-it-fix-it loop
• During initialization, was not used

• Run inference f0 on to fix the originally bad examples, keep those that
are actually fixed

• Breaker b1 learns to generate *actual* errors

• Create more examples, train f1, repeat

Dbad

Dbad

 : code is correct

after applying

c(fk(y)) = 1
fk

Difference with Backtranslation
• Conceptually identical 

• Main differences: no strict criteria for filtering in back translation, have a good measure here (compiler/parser)

Implementation
• Data: open source Python files from Github

• 3M code snippets

• Check errors using Python parser

• Code is correct if it has no parse errors AND is less than 5 tokens from the input
code (correct but not change)

• 38k wrong (from 3M)

• Implementation:

• Uses encoder-decoder architecture

• Relatively small model: 4 layers, 8 heads

Results

• Bad code helps

Summary
• Lots of progress made by large language models by treating code as language  

• Exploiting properties of code lead to useful modifications of popular NLP
techniques:

• Backtranslation

• Syntax-guided generation

• Retrieval-augmented generation

• MLM

• Future work: using some of these techniques in graph generation

