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Recent progress in Neural Code 
Generation



Code generation

Completing code

Generating code from  
natural language description



What makes code generation interesting?
• Programming language is language


• Sequence of tokens sampled from an underlying grammar (so does English)


• From a modeling perspective  can be factorized auto regressively, no 
difference on the surface


• Yet


• Syntax is much more restrictive (indentation, types)


• Long-form generations needed


• Specialized knowledge


• A single token has higher odds of disrupting everything


• Potential to be the first real-world, pervasive application of language generation models in the 
next few years

p(code ∣ input)





Outline
• Part 1 

• State of the art language models are impressive to the point that telling them apart from human text is difficult. 
Does this progress translate to code-generation? 

• Alphacode: SOTA in solving competitive programming problems (“better” than 54% humans)


• Treat code like other language


• Part 2 

• Can we exploit key properties of code to improve over using language models alone? 

• Using familiar techniques from NLP toolbox and PL


• Masked language objective when dealing with code


• Retrieval-augmented generation


• Backtranslation 


• Syntax-guided generation





Competitive programming
• Given 


• A new problem


• Few (~5) input - output test cases


• Generate 1 million programs, test 
them on the 5 test cases


• Only 10k programs pass these 5 
test cases


• Check solution on a larger number 
of hidden test cases 


• Widely used in hiring for CS
Taken from https://codeforces.com/



Alphacode
Introduction

• Competitive programming contests: 
write program for a complex 
requirement, test on O(10^4) test 
cases. 

• Example


• Given two strings A and B, find if A 
and B are palindromes


• Many competitive programming 
websites

Alphacode is better than 72% of human participants at  
codeforces.com

http://codeforces.com


Overview



Datasets
• Pre-training: essentially all publicly available code on Github, filter out files > 1000 characters ~ 715.1 

GB 


• Fine-tuning:


• Scraped codeforces.com 


• Need dataset of (problem, correct solutions)


• Generated additional test cases by mutating, and checked for correctness


• Do not care about time complexity 


• Architecture: encoder-decoder


• Number of parameters vary from 1B to 41B


• Shallow (8 layers) + wide (1500 tokens) encoder —> deep (56 layers) + narrow (768 tokens) decoder


• Code is shorter than program description and test cases 

http://codeforces.com


Fine-tuning
Tags (meta-data about 

the problem)



Fine-tuning
Tricks

• Tempering to avoid overfitting:


• During training, divide the logits by T = 0.2 (<1)


• Causes sharper logits during training, but smoother logits during inference 


• No explanation provided, but intuitively could be working as backprop penalizes overly confident predictions  


• GOLD training objective to improve precision (added to the standard MLE gradient)


• The gradient for a token is up-weighted if it is already being predicted with a high confidence 



Sampling and Filtering
• Sample 1M programs for a given problem, select 10 

programs from this pool


• Done by randomly varying tags in the input + 
changing the input temperature


• If one of the 10 solves the problem, consider it solved


• Step 1: Filter obviously wrong programs by using unit 
tests  
(~99% discarded)


• Left with 10k


• Step 2: Cluster programs using artificially generated 
test cases (key insight)



Filtering by clustering
• Let  be a set of programs,  be a set of inputs 

• If programs  and  have the same output for the given input set, they 
belong to the same cluster 


• We don’t have to care about correctness


• Programs that generate same output for the same input must be 
semantically the same 


• Sample one program per cluster

{p1, p2, …, pn} {x1, x2, …, xm}

pi pj



Main results

https://alphacode.deepmind.com/





Similar works

Model behind the outputs we saw on the first page
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Neurips 2021



Key idea

• Masked language modeling (MLM) for language drops tokens randomly 

• Too simple for programming languages, not very informative 


• Syntax errors (e.g., missing “;”) might be easily corrected by the code


• Masking a variable once, but not everywhere, allows copying names


• Instead of MLM, they propose DOBF (de-obfuscation objective) that 
leverages structure of programming languages 



De-obfuscation

- Replace class, function, and variable names with special tokens, and train a model to recover them.

- Syntax related tokens are not masked out

- Model has to come up with meaningful variable and function names, which requires deep understanding of code semantics.



Implementation
• Encoder-decoder transformer based Seq2seq model with the new DOBF 

objective (12 layers, 12 heads)


• Dataset: collect all publicly available code on Github, retain files with < 2000 
tokens

Initializing with MLM helps further



Results



Qualitative Results
Completing matrix operations code



Neurips 2021 (Spotlight)



Introduction
• Task: complete a given piece of code


•  where 


• X is the input specification: class name, type of the 
variables, other complete methods


• Y is a completion of X


• Key idea:


• Neurosymbolic attribute grammars: Use static 
analysis and grammar to guide code generation

pΘ(Y ∣ X)



Model
• Let Z be the (latent) user intent behind the ambiguous incomplete code X 

•  

•  : context encoder


• : program synthesizer

p(Y ∣ X) = ∫Z
p(Z ∣ X)p(Y ∣ Z)dZ

p(Z ∣ X)

p(Y ∣ Z)



Context encoder
• X: input or evidence


• Consists of method names, formal parameters, comments (7 types of “evidence”)


• Assume Z is Normal, X is sampled from Z 




• And thus:


• 


• In summary, X (input) is used to generate parameters of normal from which Z is sampled. Each part of the input contributes individually to 
sampling the latent variable



Program Synthesizer

•  

•  : context encoder


• : program synthesizer

p(Y ∣ X) = ∫Z
p(Z ∣ X)p(Y ∣ Z)dZ

p(Z ∣ X)

p(Y ∣ X) Aside



Context-free grammar
• Set of production rules, where left-hand side is a non-terminals, and right-hand side is a combination of 

terminals and non-terminals

S → aSa
S → bSb
S → ε 

• Generative process:


• Start with a production, recursively expand non-terminals


• S → aSa → abSba  → abba 

• Parse trees 

• If each rule is picked probabilistically, it’s called a P-CFG


• Aside: if the LHS contains a terminal the grammar is context sensitive 

S → aSa
S → bSb
S → ε 
abSba → abaaba 
    

S

a aS

b bS

ε



Attribute grammars
• Context-free grammars + attributes associated with each symbol 

• Attribute grammar


• Attaches some auxiliary information with each symbol, and defines how the information flows as parsing 
proceeds


• Each symbol gets inherited attributes and synthesized attributes


• Example 

S1 → aS2a [S1.value = S2.value * 3]
S1 → bS2b [S1.value = S2.value * 2]
S → ε [ S.value = 5 ]

S

a a
S

b bS

ε

5

30

10



Program Synthesizer
• Generative process: 


•  where each of the  is a symbol and its expansion 


• Standard conditional distribution: PCFG conditioned by the input latent representation Z, and the 
expansion so far


• 


• Their work: 

•  where the extra  term is supplied by the auxiliary grammar


• Key idea: inform the generation process with Auxiliary attributes of the program generated so far using a 
static analyzer:


• Static analyzer: can infer the types of the method generated so far

Y = (S1, S2, …, Sn) Si

Y = ∏
i

P(Si ∣ S<i, Z)

Y = ∏
i

P(Si ∣ S<i, Z, A(Si)) A(Si)



Generation without attribute grammar

Input Output Grammar



Generation without attribute grammar

Y = ∏
i

P(Si ∣ S<i, Z)



Generation without attribute grammar



Generation with vanilla CFG



Generation with vanilla CFG



What is vanilla PCFG generation losing?
• Given the data, we can train a 

PCFG guided generation model 

• There are some global constraints 
of the code that are readily 
available by static analysis 

• Type constraints, scope 
constraints etc.


• Can make life of the model 
easier 



Attribute grammars can maintain useful auxiliary information



Generation with Attribute Grammar



Experiments

• Architecture: Tree-LSTM with 63M parameters 

• However, they can only work on a subset of Java for which their grammar is 
defined


• Training on 1.57M method bodies of java


• Randomly remove a method body, and try to complete it with their method 
and baselines


• Evaluation based on key properties (compiler errors) of generated code



Results
Their method 


without 
attribute

grammar 
(shown 
earlier)

Their  
method



Results
• BLEU score is useless for comparing code 


• Compare Jaccard score of API calls



ICLR 2022



Introduction
• Task: generating program  from natural language description 


• Setup: few-shot prompting - create a prompt from k examples  


• Questions 

• 1. How to select relevant examples for the prompt?


• 2. How to enforce additional syntactic constraints while decoding the output?

p u

{(ui, pi)}k
i=1

Which city has the 
highest number of 
departing flights?



Selecting relevant examples for the prompt
Target similarity tuning

• Typical approach: Given a u (problem description), k examples  find closest examples based on 
 for some distance metric  


• 


• Problem: we want to retrieve similar code, not similar descriptions


• Similarity in descriptions may not translate to similarity in the output code


• Their approach:


• 


• Where  is similarity between the syntax trees


• Similarity function now needs to pay attention to the difference in the syntax trees

{(ui, pi)}k
i=1

fθ(ui, uj) fθ ∈ [0,1]

Lsim = Ei,j∼𝒟diff
fθ(ui, uj) − Ei,j∼𝒟sim

fθ(ui, uj)

Lsim = Ei,j∼𝒟[ fθ(ui, uj) − S(pi, pj)]2

S(pi, pj) ∈ [0,1]



Selecting relevant examples for the prompt
Target similarity tuning



Constrained semantic decoding
• Unconstrained language models may produce wrong output when completing complex expressions 


• Key idea: code is structured, can help using grammar


• Two layers: context-sensitive and context-free


• Context-free layer:


• Uses parser to restrict the set of next tokens


• Context-sensitive layer:



Completion Engine

• Instead of sampling from an unconstrained set, sample tokens that would keep the 
program generated so far valid


• Let  be the program decoded till current time step t


• Use a parser to find a list of production rules and possible token types that can 
follow 


• Let  be the set of languages that can be completed to a valid program. Given a 
string s, how to determine if it is in ?


•

pt

pt

Lc

Lc



Completion Engine



Results



ICML 2021



Overview
• Fix a given piece of incorrect code 
 

• No parallel data available 

• BUT:


• Large quantities of code online


• Compiler can check if the code is correct or not



Initialization with synthetic errors
• Let  be a large corpus of code, and  and  be the correct and 

incorrect splits.


•  Introduce synthetic perturbations (random token drop/typos/punctuation 
errors) in  


• 


• Train initial fixer f0 to go from bad to good, and initial breaker b0 to go from 
good to bad

D Dgood Dbad

Dgood



Initialization with synthetic errors
Why is it not enough?

• Real and synthetic error distribution is different



Break-it-fix-it loop
• During initialization,  was not used


• Run inference f0 on  to fix the originally bad examples, keep those that 
are actually fixed


• Breaker b1 learns to generate *actual* errors


• Create more examples, train f1, repeat

Dbad

Dbad

 : code is correct 

after applying 

c( fk(y)) = 1
fk



Difference with Backtranslation
• Conceptually identical 

• Main differences: no strict criteria for filtering in back translation, have a good measure here (compiler/parser)



Implementation
• Data: open source Python files from Github


• 3M code snippets


• Check errors using Python parser


• Code is correct if it has no parse errors AND is less than 5 tokens from the input 
code (correct but not change)


• 38k wrong (from 3M)


• Implementation: 

• Uses encoder-decoder architecture 


• Relatively small model: 4 layers, 8 heads



Results

• Bad code helps



Summary
• Lots of progress made by large language models by treating code as language  

• Exploiting properties of code lead to useful modifications of popular NLP 
techniques:


• Backtranslation


• Syntax-guided generation


• Retrieval-augmented generation


• MLM


• Future work: using some of these techniques in graph generation


