Recent progress in Neural Code
Generation

Aman @ Yiming Yang’s Lab Seminar, 2/22/22

Code generation

def get_dfdx(,) —> float:
derivative of func at X
= le-06

write a program to search google for a given question

def query_google(-

Completing code

Generating code from
natural language description

What makes code generation interesting?

* Programming language is language

* Seqguence of tokens sampled from an underlying grammar (so does English)

» From a modeling perspective p(code | input) can be factorized auto regressively, no
difference on the surface

* Yet
e Syntax is much more restrictive (indentation, types)
* Long-form generations needed
e Specialized knowledge
* A single token has higher odds of disrupting everything

* Potential to be the first real-world, pervasive application of language generation models in the
next few years

Most Popular

Why Putin’s Russia is so interested
in Ukraine’s Donetsk and Luhansk
5 N regions

Fﬂ RTUNE wewcwesv macazme wewsierrers poocasts covin9 MOREw T TR < Lbscribe Now
> = Elon Musk laughed at the idea that p) PAID CONTENT
b Tesla's German Gigafactory would - This is how A.'I. shapes the future of
use too much water. Now it’s a main data automation
reason why the plantisn’t open FROM BASWARE

" -‘S Goldman Sachs lays out a worst-
o Sl Case scenario for markets if Russia-
g - Ukraine conflict escalates
NEWSLETTERS - EYE ON A.l.

Learning to code will not save your kids

BY JEREMY KAHN
February 8, 2022 11:19 AM EST

Watch out Developers:
DeepMind AI Can Now Write
Code as well as the Average
Programmer

Programming jobs may be on the decline in the not-so-distant future.

Trending Technology Security Business Finance Education Home & Office More i

| MusT READ: Here's how to secure your home network

Bad news for developers? This Al is getting
very good at writing code

DeepMind says its research could eventually help programmers code more efficiently and open up the field to people
who don't code.

Outline

e Part1i

« State of the art language models are impressive to the point that telling them apart from human text is difficult.
Does this progress translate to code-generation?

* Alphacode: SOTA in solving competitive programming problems (“better” than 54% humans)
* [reat code like other language
 Part 2
 Can we exploit key properties of code to improve over using language models alone?
* Using familiar techniques from NLP toolbox and PL
 Masked language objective when dealing with code
* Retrieval-augmented generation
* Backtranslation

* Syntax-guided generation

@ DeepMind

2022-2-2

Competition-Level Code Generation with
AlphaCode

Yujia Li", David Choi", Junyoung Chung’, Nate Kushman”, Julian Schrittwieser , Rémi Leblond , Tom
Eccles”, James Keeling”, Felix Gimeno , Agustin Dal Lago”, Thomas Hubert , Peter Choy", Cyprien de
Masson d’Autume Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven Gowal, Alexey

Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson, Pushmeet Kohli, Nando de
Freitas, Koray Kavukcuoglu and Oriol Vinyals
“Joint first authors

Competitive programming

e Given
* A new problem
 Few (~5) input - output test cases

 Generate 1 million programs, test
them on the 5 test cases

 Only 10k programs pass these 5
test cases

 Check solution on a larger number
of hidden test cases

o Widely used in hiring for CS

A. Team

time limit per test: 2 seconds
memory limit per test: 256 megabytes
input: standard input
output: standard output

One day three best friends Petya, Vasya and Tonya decided to form a team and take part in programming contests. Participants are
usually offered several problems during programming contests. Long before the start the friends decided that they will implement a
problem if at least two of them are sure about the solution. Otherwise, the friends won't write the problem’s solution.

This contest offers n problems to the participants. For each problem we know, which friend is sure about the solution. Help the friends
find the number of problems for which they will write a solution.

Input
The first input line contains a single integer n (1 <n < 1000) — the number of problems in the contest. Then » lines contain three integers

each, each integer is either 0 or 1. If the first number in the line equals 1, then Petya is sure about the problem's solution, otherwise he
isn't sure. The second number shows Vasya's view on the solution, the third number shows Tonya's view. The numbers on the lines are
separated by spaces.

Output
Print a single integer — the number of problems the friends will implement on the contest.

‘Examples

input

- e W
@ =
D =D

output

input

@ = N
- @
L]

output

Taken from https://codeforces.com/

Alphacode

Introduction

 Competitive programming contests:
write program for a complex
requirement, test on O(1074) test
cases.

 Example

* Given two strings A and B, find if A
and B are palindromes

 Many competitive programming
websites

%competitors < rating

100% -

0% -

80% -

60% -

40% -

20% -

AlphaCode

V4

/

_—

/

500 1000

Codeforces rating

1500

codeforces.com

2000

2500

Alphacode is better than 72% of human participants at

http://codeforces.com

Overview

P e DALA =+ resiste i .
: GitHub CodeContests : Codeforces Large set Selected
: | of potential small set
| Problems : Problems ? solutions of candidates
[|
: | : Ir‘rr = a‘*—) Py ﬂ C++JJ
S [' Py C++
Filtering
& clustering

fmmmm - - ---- LEARNING ----f--------

Large scale) Execute

Pre-trainin —> Fine-tunin —_—)
& & | sampling & evaluate
|

W R R B W RSN R SRR BEEE SEEE SRS B R GRS SRR SRR R SRR SRR SRR BEEE GEEE EEE EEE GEEE BEEE BEE EE EE e wee eee ee ae

Datasets

* Pre-training: essentially all publicly available code on Github, filter out files > 1000 characters ~ 715.1
GB

* Fine-tuning:

e Scraped codeforces.com

* Need dataset of (problem, correct solutions)
* (Generated additional test cases by mutating, and checked for correctness
* Do not care about time complexity
* Architecture: encoder-decoder
 Number of parameters vary from 1B to 41B

 Shallow (8 layers) + wide (1500 tokens) encoder —> deep (56 layers) + narrow (768 tokens) decoder

 Code is shorter than program description and test cases

http://codeforces.com

Fine-tuning

Tags (meta-data about
the problem)

Encoder Input X:

Decoder Output Y:

RATING: 3100
TAGS: binary search,math

LANGUAGE IS python3
CORRECT SOLUTION

OWNS are LI e d uentially. The towns are numbered from 1
to n in clockwise order. In the i-th town, there lives a singer with a
repertoire of a_i minutes for each 1 [1, n].

lives in, and gave exactly one concert in each town. In addition, 1n each
town, the i-th singer got inspired and came up with a song that lasts a_i
minutes. The song was added to his repertoire so that he could perform it in
the rest of the cities.

Hence, for the i-th singer, the concert in the i-th town will last a_i

minutes, in the (i + 1)-th town the concert will last 2 - a_i minutes, ...,
the ((i + k) mod n + 1)-th town the duration of the concert will be (k + 2
a_ i, ..., in the town ((i + n - 2) mod n + 1) - n - a_i minutes.

You are given an array of b integer numbers, where b_i is the total duration
of concerts in the i-th town. Reconstruct any correct sequence of positive
integers a or say that it 1s impossible.

Input
The first line contains one integer t (1 < t < 1073) - the number of test

cases. Then the test cases follow.

n (1 £<n < 4 - 1074) - the number of cities. The second line contains n

integ;rs E_l b 2, ..., b_n (1 b i < 10°{9}) - the total duration of

concerts in 1-th city.

The sum of n over all test cases does not exceed 2 - 1075.

Output

For each test case, print the answer as follows:

If there is no suitable sequence a, print NO. Otherwise, on the first line
print YES, on the next line print the sequence a_1, a_2, ..., a_n of n
integers, where a_i (1 < a_i < 107{9}) is the initial duration of repertoire
of the i-th singer. If there are multiple answers, print any of them.

Example

Input

N

16 14

EH HFHHAHAHAFAHAHFAFAHAHFAATATFTHHAHFAFAHRATEFHFHEAEAFTETHEATETEFHEATATEFASETHEATETSEHEATETSESEEASESEEAESEHEAES

W WD

Each singer visited all n towns in clockwise order, starting with the town he

Each test case consists of two lines. The first line contains a single integer

import sys
input = sys.stdin.readline

t=int (input ())
for tests in range(t):
n=int (input ())
B=1list (map(int,input () .split ()))

A=[-1<<100] *n
MIN=float ("inf")
MAX=-1

for i,b in enumerate(B):
MIN=min (MIN,b)
MAX=max (MAX,b)

SUM=sum (B)

if SUMY%(n*x(n+1)//2) '=0:
print ("NO")
continue

SUM//=(n*x(n+1)//2)

for i in range(n):
j=i-1
if j==-1:
j=n-1
a=(SUM-B[i]+B[j])//n
if a>MIN or a>MAX or a<l:
print ("NO")
break
Ali]=a
else:
print ("YES")
print (xA)

Fine-tuning
Tricks

* Tempering to avoid overfitting:

* During training, divide the logits by T = 0.2 (<1)

e (Causes sharper logits during training, but smoother logits during inference

* No explanation provided, but intuitively could be working as backprop penalizes overly confident predictions
« GOLD training objective to improve precision (added to the standard MLE gradient)

* The gradient for a token is up-weighted if it is already being predicted with a high confidence

VLow(0) == > Po(s)VIogPy(s)

seSolution tokens

Sampling and Filtering

 Sample 1M programs for a given problem, select 10
programs from this pool

 Done by randomly varying tags in the input +
changing the input temperature

* |f one of the 10 solves the problem, consider it solved

» Step 1: Filter obviously wrong programs by using unit
tests
(~99% discarded)

o Left with 10k

» Step 2: Cluster programs using artificially generated
test cases (key insight)

Codeforces

Py C++

Filtering by clustering

 Let {py,py, ..., P, } be aset of programs, {x,X,, ..., X, } be a set of inputs

» It programs p; and p; have the same output tor the given input set, they
belong to the same cluster

e \We don’t have to care about correctness

 Programs that generate same output for the same input must be
semantically the same

e Sample one program per cluster

Main results

https://alphacode.deepmind.com/

Aobroach Validation Set Test Set
PP 10@1k 10@10k 10@100k 10@1M | 10@1lk 10@10k 10@100k

OB 16.9% 22.6% 27.1% 30.1% | 14.3% 21.5% 25.8%

41B 16.9% 23.9% 28.2% 31.8% | 15.6% 23.2% 27.7%

41B + clustering | 21.0% 26.2% 31.8% 34.2% | 16.4% 25.4% 29.6%
Contest ID| 1591 1608 1613 1615 1617 1618 1619 1620 1622 1623 |Average
Best| 43.5% 43.6% 59.8% 60.5% 65.1% 32.2% 47.1% 54.0% 57.5% 20.6%| 48.4%
Estimated | 44.3% 46.3% 66.1% 62.4% 73.9% 52.2% 47.3% 63.3% 66.2% 20.9%| 54.3%
Worst | 74.5% 95.7% 75.0% 90.4% 82.3% 53.5% 88.1% 75.1% 81.6% 55.3%| 77.2%

— 300M ——— 300M
—— 3B 0.41 —— 3B
0.25/ —— 9B — 98B
—— 41B el 31 N 51
0.201 0.3-
x ©
© 7
S 0.15- ©
0.2
0.10-
0.051 / 0.1-
0.00 - - ==
10° 10° 102 103 104 105 10° 100 10! 102 103 104 10° 106
Sample budget Sample budget
(@) 10 attempts per problem (b) Unlimited attempts per problem

Figure 6 | Solve rate scaling vs. number of samples. The solve rate scales approximately log-linearly
with the number of samples, although this tapers off slightly in the 10@Xk setting. The better, larger
scale models have higher scaling slopes in this log-linear plot.

Similar works

Evaluating Large Language Models Trained on Code

Mark Chen ! Jerry Tworek ! Heewoo Jun ! Qiming Yuan™' Henrique Ponde de Oliveira Pinto *! Model behind the outputs we saw on the first page
Jared Kaplan“?> Harri Edwards' Yuri Burda' Nicholas Joseph? Greg Brockman! Alex Ray'! Raul Puri'
Gretchen Krueger ! Michael Petrov' Heidy Khlaaf® Girish Sastry! Pamela Mishkin' Brooke Chan '
Scott Gray ! Nick Ryder' Mikhail Pavlov! Alethea Power' Lukasz Kaiser! Mohammad Bavarian '
Clemens Winter ' Philippe Tillet! Felipe Petroski Such! Dave Cummings' Matthias Plappert '
Fotios Chantzis! Elizabeth Barnes' Ariel Herbert-Voss! William Hebgen Guss! Alex Nichol' Alex Paino '
Nikolas Tezak ' Jie Tang' Igor Babuschkin' Suchir Balaji' Shantanu Jain! William Saunders '
Christopher Hesse! Andrew N. Carr! Jan Leike'! Josh Achiam' Vedant Misra' Evan Morikawa '
Alec Radford! Matthew Knight' Miles Brundage' Mira Murati' Katie Mayer ' Peter Welinder '
Bob McGrew' Dario Amodei? Sam McCandlish? Ilya Sutskever' Wojciech Zaremba '

Program Synthesis with Large Language Models

Jacob Austin” Augustus Odena”
Maxwell Nye! Maarten Bosma Henryk Michalewski David Dohan Ellen Jiang Carrie Cai

Michael Terry Quoc Le Charles Sutton

Google Research

Outline
 Part1 «

« State of the art language models are impressive to the point that telling them apart from human text is difficult.
Does this progress translate to code-generation?

* Alphacode: SOTA in solving competitive programming problems (“better” than 54% humans)
* [reat code like other language
 Part 2
 Can we exploit key properties of code to improve over using language models alone?
e Using familiar techniques from NLP toolbox and PL
 Masked language objective when dealing with code
* Retrieval-augmented generation
* Backtranslation

* Syntax-guided generation

DOBF: A Deobfuscation Pre-Training Objective for
Programming Languages

Baptiste Roziere” Marie-Anne Lachaux® Marc Szafraniec
Facebook Al Research Facebook Al Research Facebook Al Research
Paris-Dauphine University malachaux @tb.com szafraniec @tb.com
broz@ftb.com

Guillaume Lample
Facebook Al Research
glample @tb.com

Neurips 2021

Key idea
 Masked language modeling (MLM) for language drops tokens randomly

* Joo simple for programming languages, not very informative
o Syntax errors (e.g., missing “;”) might be easily corrected by the code
 Masking a variable once, but not everywhere, allows copying names

* |nstead of MLM, they propose DOBF (de-obfuscation objective) that
leverages structure of programming languages

De-obfuscation

Input code

def bfs(graph, root):
visited - [root]
queue - [root]
queue:
node - queue.pop(0)

neighbor graph[node]:
neighbor visited:

visited.append(neighbor)

queue.append(neighbor)
visited

MLM

DOBF

—

MLM input

def bfs(graph[MASK] root):
visited [MASK] root]
[MASK] = [root]
[MASK] queue:
node [MASK] queue.pop(0)

neighbor [MASK] [node] :
[MASK] neighbor visited:
visited.append(neighbor[MASK]
[MASK].append(neighbor)
[MASK] visited

DOBF input

def Fo(ve, V1):
V2 = [V1]
V3 = [V1]
V3:
V5 = V3.pop(0)

V4 Vo [V5]:

V4 VO:
V2.append(V4)

V3.append(V4)

\'

- Replace class, function, and variable names with special tokens, and train a model to recover them.

- Syntax related tokens are not masked out
- Model has to come up with meaningful variable and function names, which requires deep understanding of code semantics.

MLM output

DOBF output

graph
root
visited

queue
neighbor
node

Implementation

 Encoder-decoder transformer based Seg2seq model with the new DOBF
objective (12 layers, 12 heads)

» Dataset: collect all publicly available code on Github, retain files with < 2000
tokens

Eval pops = 0 Eval popr = 1

Acc Fl Acc Fl
DOBF, 56.3 68.0 0.4 0.9
| DOBF, 5 61.1 71.2 41.8 548 |
DOBF, 18.1 27.0 15.6 581

DOBFy 5 mit MLM 67.6 76.3 45.7 5&.0 Initializing with MLM helps further
DOBF; init MLLM 20.0 28.3 49.7 61.1

Results

Clone Det Code Sum Java Code Sum Python NLCS | Python—Java Java—Python

(F1 score) (BLEU) (BLEU) (MRR) (CA@]) (CA@1)
k=1 k=10 k=1 k=10
Transformer 88.14 16.58 16.43 0.025 24.0 284 29.0 29.7
MLM 91.89 18.59 17.95 0.308 44.8 454 345 35.6
DAE 96.30 19.19 18.28 0.380 | 48.3 49.2 321 328
CodeBERT 96.50 18.25 18.22 0.315 40.8 456 36.5 36.7
GraphCodeBERT 96.38 18.78 18.51 0.377 44.3 44.1 35.6 37.8
DOBF 1nit scratch 96.52 18.19 17.51 0.272 43.9 44.1 35.2 34.7
DOBF 95.87 19.05 18.24 0.383 43.5 44.1 38.7 40.0
DOBF+DAE 95.82 19.36 18.58 0.397 | 46.6 47.3 40.6 42.4

Qualitative Results

Completing matrix operations code

Input Code

Function Name Proposals

def FUNC_O (ml1l, m2):
assert ml.shape ==

n, m = ml.shape
res = [[0 for _
for i in range(n):

in range(m)] for _

m2 . shape

in range(n)]

for j in range(m):

res[i] [j] = m1[i][j] + m2[i] [j]

return res

def FUNC_O (matrix):
n, _ = matrix.shape

for i in range(n):

for j in range(i,n):
matrix[i] [j], matrix[j][i] = \
matrix[j][i], matrix([i] [j]

def FUNC_O (ml1l, m2):

nl, ml = ml.shape
n2, m2 = m2.shape
assert n2 == ml
res = [[0 for _

in range(m2)] for _
for i in range(ni):

in range(nl)]

for j in range(m2):
res[i] [j] = sum([m1[i] [k] * m2[k][j]

return res

for k in range(n2)])

matrix_add
matrixAdd
matrixadd
matrix_sum
matrix_addition

transpose

rotate

rotate_matrix
symmetric
rotate_matrix_by_row

matrix_product
mat_mult
matmul mat
matprod
matrixProduct

25.9%
22.5%
18.8%
16.7%
16.1%

36.7%
29.5%
17.1%
8.9%
7.7%

28.8%
23.8%
17.0%
16.0%
14.4%

Neural Program Generation Modulo Static Analysis

Rohan Mukherjee Yeming Wen Dipak Chaudhari Thomas W. Reps
Rice University UT Austin UT Austin University of Wisconsin
Swarat Chaudhuri Chris Jermaine
UT Austin Rice University

Neurips 2021 (Spotlight)

Introduction

 Jask: complete a given piece of code

o p®(Y ‘ X) Where

X is the input specification: class name, type of the
variables, other complete methods

* Y is a completion of X
 Key idea:

 Neurosymbolic attribute grammars: Use static
analysis and grammar to guide code generation

(a)

public class FileUtil({
String err;
public int read(File f){...}

/* write lines to file x/
public void write (
File f, String str) {?7?}}

(b)
void write(File f, String str) {
try {
FileWriter wvar_0;
var_ 0 = new FileWriter (f);

var_0O.write(str);

} catch (IOException var_0) {
var_0O.printStackTrace();
System.out.println(ARG);

return; }

}

Model

* Let Z be the (latent) user intent behind the ambiguous incomplete code X

. pY | X) =J pZ | X)pY | Z)dZ
/

» p(Z | X) : context encoder

« p(Y | Z): program synthesizer

Context encoder

* X:input or evidence
* Consists of method names, formal parameters, comments (7 types of “evidence”)

e Assume Z is Normal, X is sampled from Z

P(X|Z,0) = (HNormal (Xcatis,i)|Z, IUCalls)) (HNormal(f(XTyp%,j)Z,Ia%yp(,é))

* And thus:
/ %UIQfJ(XJ k) | \
P(Z|IX) = L| = — — 1
\ 1+Z‘XJ’(7 . 1+Z‘XJ’U 2/

* In summary, X (input) is used to generate parameters of normal from which Z is sampled. Each part of the input contributes individually to
sampling the latent variable

Program Synthesizer

. pY | X) =J pZ | X)p(Y | Z)dZ
/

« p(Z | X) : context encoder V

« p(Y | X): program synthesizer Aside

Context-free grammar

« Set of production rules, where left-hand side is a non-terminals, and right-hand side is a combination of

terminals and non-terminals
S — aSa

S — bSh
S— ¢

 (Generative process:

o Start with a production, recursively expand non-terminals

e S 0 aSa @ abSba — abba

e Parse trees

* |If each rule is picked probabilistically, it’s called a P-CFG

* Aside: if the LHS contains a terminal the grammar is context sensitive

S — ala
S — bSh

S

S

S
S — ¢ l
abSba — abaaba @

Attribute grammars

 (Context-free grammars + attributes associated with each symbol

* Attribute grammar

* Attaches some auxiliary information with each symbol, and defines how the information flows as parsing
proceeds

 Each symbol gets inherited attributes and synthesized attributes

 Example /

S — aS2a [S1.value = S2.value * 3]

S1 — bS2b [S].value = S2.value * 2]
S — e[S.value=5 |

9

Program Synthesizer

Generative process:

« Y =10(5,9,,...,9,) where each of the §, is a symbol and its expansion

Standard conditional distribution: PCFG conditioned by the input latent representation Z, and the
expansion so far

r=1]rs15..2)

Their work:

Y= HP(SZ- | S.;, Z,A(S;)) where the extra A(S,) term is supplied by the auxiliary grammar
i

Key idea: inform the generation process with Auxiliary attributes of the program generated so far using a
static analyzer:

o Static analyzer: can infer the types of the method generated so far

Generation without attribute grammar

2 1import java.io.*;
3
. . ‘ ' ' ' .10.Fi) : String f
4~ public c1054 FlleUtl].Sl vomdtv:;tze(Jova i0.File fp_0, java.lang.String fp_1){
> . . ' java.io.FileWriter var_0;
o~ publlcl .nt read(File O){l var_0@ = new java.io.FileWriter.FileWriter(
7 Reader a = new 1le eader\("file.txt"); (jGVO.iO.File) fp_@, (boolean) BOOL_LITERAL),
8 java.io.BufferedWriter var_1;
4 } = var_1 = new java.io.Bufferediriter.BufferedWriter(
(java.io0.Writer) var_0);
10 - var_l.write(java.lang.String: fp_1);
11 « VAL, var_1l.newlLine();
12 I write Lines to file I }
= catch(java.10.I0Exception var_0){
13 / var_0.printStackTrace();
14 @synthesize|public void write(File fp_0, } b ’
15 ~ String fp_1){ return;
16 | }
17 }
18 }

Input Output

root
stmt
stmt
stmt

invoke
api_call

stmt;
stmt; stmt
decl;

invoke

ret_var = expr_var . api_call (formal_params)
readln | writeln | ..

Grammar

Generation without attribute grammar

Latent stmt
position /

except stmt -> invoke | clsinit | except | decl |...

y=|]res;18..2)

P(x | stmt)

invoke.clsinit ...except.... decl ...

Generation without attribute grammar

Generation with vanilla CFG

decl clsinit

— SN\ =i

type var api ret_var input_vars java.io.FileWriter var_0;

l l \ var_@ = new java.io.FileWriter.FileWriter(

FileWriter var 0 FileWriter(..) var_0O .

Generation with vanilla CFG

type

l

FileWriter

¥

var 0

Lat.e.nt —
position \
except \ return
A// J \A\A\A catih \ o
decl clsinit decl clsinit invoke invoke decl invoke
/jmput vars j \ l / \
api ret_var 3P' inp_var type api expr_var

A 2T N

FileWriter(..) var_0 x var 0 var 0 printStackTrace() var_0O

What is vanilla PCFG generation losing?

e Given the data, we can train a
. ’ . void write(java.io.File-fp_ﬁ, java.lang.Strin-fp_l {
PCFG guided generation model

try {
java.io0.FileWriter var_0;

var_0 = new java.io.FileWriter.FileWriter
(java.io.Fi1e1 fp_@,l(boolean) BOOL_LITERALD;

* There are some global constraints o i B |
. var_1l = new java.io0.BufferedWriter.BufferedWriter(
of the code that are readily (java.io.Writer) var_0J;
available by static analysis vac lywrite(java.lang.String: [fp_1)

var_1.newLine();
} VAF

catch(java.i0.I0Exception| var_0){

_ - var_0.printStackTrace();
* [ype constraints, scope }

constraints etc. \ return;

e Can make life of the model
easier

Attribute grammars can maintain useful auxiliary information

import java.io0.*;

2

3 . . . Encoder Latent

4 - public C10$ —
5 position

6~ public|int read(File a){
/
8
9

Reader a = new FileReader("file.txt");

Semantic Information

12 write lines to file —

@synthesize|public void write(File fp_0, :
15 ~ String fp_1){ fp_1 String

fp O File

Generation with Attribute Grammar

Symtab Latent stmt
fp_0 File ssadicial /

fp 1 String except

var_0 FileWriter /
clsinit -> api; ret_var |

— tr i
FiteWriter ' clsinit. symtabl=try. symtablu decl.mod _symtabl
clsinit. symtabl [ret_var. id7] = api.ret t_,v‘)c |

x'-,decl clsinit |
AN

l l l l ? = new java.io.FileWriter.FileWriter(
<7

FileWriter ~ var_0 FileWriter(..) =%

Experiments

* Architecture: Tree-LSTM with 63M parameters

 However, they can only work on a subset of Java for which their grammar is
defined

* Training on 1.57M method bodies of java

 Randomly remove a method body, and try to complete it with their method
and baselines

* Evaluation based on key properties (compiler errors) of generated code

Results

Their method

without
attribute
grammar |
(shown Their
earlier) method
GPTNeol25M | GPTNeol.3B | CODEX | CODEGPT | GNN2NAG CNG NSG
No undeclared variable access 89.87% 90.36% 88.62% 90.94% 47.44% 19.78% | 99.82 %
Valid formal parameter access NA NA NA NA 25."78% 11.03% | 99.55%
Valid class variable access NA NA NA NA 15.40% 12.75% | 99.53%
No uninitialized objects 93.90% 91.73% 90.82% 94.37% 21.20% 21.56% | 99.01%
No variable access error 90.36% 90.51% 88.86% 91.32% 28.92% 17.92% | 99.69 %
Object-method compatibility 98.36 % 98.09% 98.35% 97.84% 21.43% 12.23% | 97.53%
Return type at call site 97.38% 98.01% 98.53 % 97.83% 23.86% 16.40% | 98.01%
Actual parameter type 87.03% 86.36% 92.28% 88.71% 9.27% 16.09% | 97.96 %
Return statement type 84.05% 85.09% 88.13% 85.23% 12.34% 951% | 90.97 %
No type errors 87.25% 88.13% 91.42% 88.10% 16.31% 13.56% | 97.08 %
Return statement exists 99.61% 99.80% 98.44% 99.57% 94.02% 99.92% | 97.10%
No unused variables 96.42% 96.46% 96.82% 97.64 % 20.95% 24.29% | 93.84%
Percentage of parsing 98.18% 98.13% 96.41% 97.08% 100.0% 100.0% | 100.0%
Pass all checks 65.26% 64.88% 47.49% 67.73% 17.34% 12.87% | 86.41%

Results

 BLEU score is useless for comparing code

« Compare Jaccard score of API calls

GPTNeol25M | GPTNeol.3B | CODEX | CODEGPT | GNN2NAG | CNG | NSG
Set of API Calls 32% 37% 36% 36% 3% 22% | 33%
Sequences of API Calls 17% 20% 16% 19% 0.3% 18% | 42%
Sequences of Program Paths 12% 15% 10% 14% 0% 17% | 39%
AST Exact Match 12% 15% 10% 14% 0% 6% | 26%

SYNCHROMESH: RELIABLE CODE GENERATION FROM
PRE-TRAINED LANGUAGE MODELS

Gabriel Poesia*' Oleksandr Polozov**
Stanford University X, the moonshot factory
poesial@stanford.edu polozovldgoogle.com

Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, Sumit Gulwani
Microsoft Research, Redmond
{levu,astiwar,gustavo.soares,meek,sumitg}@microsoft.com

ICLR 2022

Introduction

» Task: generating program p from natural language description u

SELECT City
FROM Flights AS T1
JOIN Airports AS T2

Which city has the ON T1.SourceAirport =
highest number of > T2.AirportCode
departing flights? GROUP BY City
Parting Tig ORDER BY COUNT(*)
DESC LIMIT 1

» Setup: few-shot prompting - create a prompt from k examples { (u;, pl-)}i.‘=1
* Questions
1. How to select relevant examples for the prompt?

e 2. How to enforce additional syntactic constraints while decoding the output?

Selecting relevant examples for the prompt

Target similarity tuning

» Typical approach: Given a u (problem description), k examples {(u;, pl-)}i.‘=1 find closest examples based on
Jo(u;, u;) for some distance metric f, € [0,1]

o Ly, = i,jNQZdifffe(uia ’/‘j) — Ei,jrvgzsimfe(ui» ”j)
* Problem: we want to retrieve similar code, not similar descriptions

e Similarity in descriptions may not translate to similarity in the output code

* Their approach:
2
o Ly = E;j gl folu;, u;) — S(p;, p))l
» Where S(p;, p;) € [0,1] is similarity between the syntax trees

* Similarity function now needs to pay attention to the difference in the syntax trees

Target similarity tuning

Question: % Prompt a
"Which city has Eanh et >
the highest "Which city has the highest elevation?"
number of SELECT City FROM Airports
airpxarts?” ORDER BY Elevation DESC LIMIT 1
Example #2: ...
S- BERTj
j Prompt
S- BER Example #1:

SELECT Team FROM Technician
GROUP BY Team

ORDER BY COUNT(*) DESC LIMIT 1
Example #2: ...

'Return the team with the most technicians.”
+ TST \

Training set

Selecting relevant examples for the prompt

b.

——> GPT-3 —— SELECT City FROM Airports

ORDER BY NumberOfAirports DESC LIMIT 1
No column "NumberOFfAirports”
in table "Airports”

——> GPT-3 ———> SELECT City FROM Airports

GROUP BY City
ORDER BY COUNT(*) DESC LIMIT 1

Constrained semantic decoding

* Unconstrained language models may produce wrong output when completing complex expressions
 Key idea: code is structured, can help using grammar

 Two layers: context-sensitive and context-free

* Context-free layer:
 Uses parser to restrict the set of next tokens

* (Context-sensitive layer:

Constraint Example of partial program Valid/Invalid
Examples

A valid identifier must follow SELECT Name, Role FROM U

after AS. User AS , Tl
2 X

Column names must come SELECT U.Name FROM Name

from schema, even behind User AS U WHERE U. , DoB

aliases. Birthday x

Completion Engine

* |Instead of sampling from an unconstrained set, sample tokens that would keep the
program generated so far valid

» Let p, be the program decoded till current time step t

 Use a parser to find a list of production rules and possible token types that can
follow p,

» Let LC be the set of languages that can be completed to a valid program. Given a
string s, how to determine if it is in L?

. ‘\](S) = {t € M st ENL"}

Completion Engine

SELECT City

FROM Flights AS T1 JOIN Airports AS T2

uestion: —

?Which city has 9 CEOM GPT-3 —>

the highest number Example #1:

of departing flights?" "Return the team with the
most technicians.”
SELECT Team

i '?SE'::'QT& — FROM Technician

GROUP BY Team SELECT City |
ORDER BY COUNT(*) DESC CSD —> FROM Flights AS T1 JOIN Airports AS T2

LIMIT 1 GROUP BY City

ON T1.AirportCode = T2. SourceAlrport
.GROUP BY City

ORDER BY COUNT(*) DESC LIMIT 1
@ No column "AirportCode" in table aliased as T1

ON T1.AirpertcedeSourceAirport =

T2.AirportCode

v

. *
e Example#2: v//‘ ‘\\v ORDER BY COUNT(*) DESC LIMIT 1

Completion GPT-3
Engine

Results

SQL Vega-Lite SMCalFlow

Model Exec. Valid Dist. Acc. Valid Dist. Acc. Valid Dist.
Andreas et al. (2020) _ i - ; i - | 2% - i

Srinivasan et al, (2021) - - - 64%) - - - - -

Rubin & Beran: (2021) | 71% - : : - - : . :

Scholak et al. (2021) | 79%‘°) 98% - . : - - - -

GPT-3 13B 16% 43% 0.42 14% 55% 0.51 38% 76% 0.43
” + CSD 20% 66% 0.44 17% 100% 0.48 40% 95% 0.40
” + TST 14% 48% 0.42 - - - 60% 88% 0.22
” 4+ CSD + TST 19% 72% 0.43 - - - 63% 98% 0.17
GPT-3 175B 28% 49% 0.36 20% 67% 0.36 449 T77% 0.41
” + CSD 35% 73% 0.36 25% 100% 0.32 45% 97% 0.37
” 4+ TST 31% 56% 0.35 - - - 60% 88% 0.24
” 4+ CSD + TST 37% 76% 0.34 - - - 66% 97% 0.18
Codex 175B 56% 73% 0.25 39% 87% 0.24 45% 79% 0.37
” + CSD 61% 85% 0.23 40% 9% 0.23 46 % 97% 0.33
” 4+ TST 60% 81% 0.23 - - - 63% 90% 0.21
” 4+ CSD + TST 64 % 85% 0.23 - - - 63% 9% 0.19

Break-It-Fix-It: Unsupervised Learning for Program Repair

1

Michihiro Yasunaga' Percy Liang '

ICML 2021

Overview

. . . . Bad example Good example
* Fix a given piece of incorrect code R
p.strip nat(ip.strij
Error! N fixed!

 No parallel data available

 BUT:
* | arge quantities of code online

 Compiler can check if the code is correct or not

Initialization with synthetic errors

- Let D be a large corpus of code, and D,,,; and D, ; be the correct and
Incorrect splits.

* [ntroduce synthetic perturbations (random token drop/typos/punctuation

errors) in D,

° 7>synthetic — {(bsynthetic (?/)a Y) ‘ Y - Dgood}

* Train initial fixer fO to go from bad to good, and initial breaker b0 to go from
good to bad

b() — TRAINgOOd_)bad (Psynthetic)

fO — TRAINbad_)gOOd (Psynthetic)

Initialization with synthetic errors
Why is it not enough?

 Real and synthetic error distribution is different

Distribution Mismatch

A& A

Real bad code

print ("PANIC! No {}".
format(ip.strip())

Synthetic bad code

print ("PANIC! No {}".
format(ip.strip()))

print ("PANIC! No {}".
format ip.strip()))

(Human Error) (Synthetic Error)

Synthetic bad code

Real bad code

def validate(type):
1f type not 1in types:
msg = ("invalid type!"
"not in %s" % types)
raise Exception(msg)
else: pass

def validate(type):
1f type not 1n types:
msg = ("invalid type!"
"not in %s" % types)
raise Exception(msg)
else: pass

def validate(type):
if type not 1in types:
msg = ("invalid type!"
"not in %s" % types)
raise Exception(msg)
else: pass

(Human Error)

(Synthetic Error)

Break-it-fix-it loop
o During initialization, D, , was not used

 Run inference fO on D, _, to fix the originally bad examples, keep those that
are actually fixed

PY) ={(z, fi_1(x))| 2 € Doag, c(fr1(z)) =1}

good—rbad (P(f)) c(f;(y)) = 1 : code is correct
after applying f,

br. = TRAIN®

 Breaker b1 learns to generate *actual™ errors

 Create more examples, train f1, repeat

Py ={(br(y), y) |y € Doood (b (y)) =0}
fr = TRAINP—g00d (D) plo)y

Difference with Backtranslation

Conceptually identical

§3.1 Initialization — Round 0

. (1) Synthetic
Synthetic bad code Perturbation

def iterFiles path)
return (name

for name in listdir(path) (2) Train [}0

if isfile(join(path,name)))

() Applyf,

def compute_loss(self):
loss = self.cost(self.preds
self.target,
self.length).sum()

(2)'ﬂah10k

(3) Apply b,
=

def iterFile(path): return
(name
for name in listdir(path) (4) Train £,
< R

if isfile(join(path,name)))

def iterFiles(path):
return (name
for name in listdir(path)
if isfile(join(path,name)))

def compute_loss(self):
loss = self.cost(self.preds=
self.target,
self.length).sum()

def iterFiles(path):
return (name
for name in listdir(path)
if isfile(join(path,name)))

Main differences: no strict criteria for filtering in back translation, have a good measure here (compiler/parser)

§3.4 FixerOnly — Round k (=1,2, ...)

Bad code

def compute_loss(self):
loss = self.cost(self.preds
self.target,
self.length).sum()

(1) Applyf,,
Keep if fixed

>

def compute_loss(self):
loss = self.cost(self.preds,

(2) Train »/" self.target,

self.length).sum()

§3.2 Break-It-Fix-It (BIFI) — Round k (=1,2, ...)

def compute_loss(self):
loss = self.cost(self.preds
self.target,

self.length).sum()

Broken code

def iterFiles(path):
return (name
for name in listdir(path)
if isfile(join(path,name))

(1) Applyf,
Keep if fixed

>

def compute_loss(self):

loss = self.cost(self.preds,

(2) Train [}h | self.target,

self.length).sum()
(3) Applyd,

Keep if broken

€ def iterFiles(path):

return (name

for name in listdir(path)
if isfile(join(path,name)))

(4) Train f, ‘X

Implementation

 Data: open source Python files from Github
 3M code snippets
* Check errors using Python parser

 Code is correct if it has no parse errors AND is less than 5 tokens from the input
code (correct but not change)

* 38k wrong (from 3M)
 Implementation:
 Uses encoder-decoder architecture

* Relatively small model: 4 layers, 8 heads

Results

 Bad code helps

Method Test accuracy
Test accuracy Initial Round-0 62.0%
Method Bad Bad Bad ref. Synthetic
100% 50% 10% bad only BIFI (ours) Round-2 90.5 %
Initial ~ Round-0 62.0% 62.0% 62.0% 62.0% —real bad Round-2 84.6%
_FixerOnly Round-2 88.6% 84.7% 785% 627% _oriic Round-2 84.0%
BIFI Round-2 90.5% 89.0% 86.7% 633% - T
- Ot :

(backtranslation)

Summary

* |ots of progress made by large language models by treating code as language

* EXxploiting properties of code lead to useful modifications of popular NLP
techniques:

 Backtranslation
» Syntax-guided generation
* Retrieval-augmented generation

« MLM

* Future work: using some of these technigques in graph generation

