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LM-based generation models

* Typically involve a transformer-based language model + large parallel corpus

Established

e Pre-train —> Fine-tune —> test

Popular setups

* Unsupervised

* GANs

* Few-shot

* Retrieval-augmented

* Plan-based

* Structured-generation

* VAE/De-noising objectives

* Structure-guided generation *

* Memory-guided generation *
 Today
* Few things not on the list

* Text generation as optimization (aka Gradient-based approaches)

e Stochastic processes



Outline

e Part A:

* [ext generation as optimization

e Part B

 Modeling dynamics of text using stochastic processes

e Part C

* Fast-slow graph generation



Text generation as optimization



Text generation as optimization

* Given
A large pre-trained language model p,

» A set of constraints, specified as functions fi, f», ---, f,,.» 81> 82> ---» &5,
e g:XXY—-R
« Constraints on inputs x and output y (e.g., semantic similarity)
c f:Y—>R
« Constraints on just the output (e.g., fluency)

 Constraints <=> Desired attributes

* Generate

« samples (text) from p, without re-training that satisfy the constraints
« Admits several popular controllable text generation problems:

 Make text polite

* |Include certain words in the output

« Condition output on certain keywords



Text generation as optimization: y as a parameter
« Z(x,y) = [+ 816 Y) +pe(y | X)

» Given an initial yo
Y~y =V (L)
 Buty is discrete...

 Formality transfer:

* Giveny = “give me the data” generate “please share the data”
» A formality constraint (e.g., f;(y) measures how polite the sentence y is)
« What is VyL??

* The intuition is well-motivated (how to change “give me the data” so that loss
Is lower), but not differentiable



V]
Instead, y; is treated as a simplex (0 <y, < 1, Z y; = 1, |V| is the

. =1
vocabulary size)

* |n short, maintain a continuous representation of y so that it can be
back propagated

Yy atensor like any other parameter, can be attached to the
computation graph and backpropagated through

e QOther solutions like Gumbel-softmax
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Formulation

 Decoding as an optimization problem:

 The language model will give some distribution over the input p,(y | x)

» Improve samples drawn from p,(y | x) without changing €

y = arg lyneii;(— logp(y|x), f1(y), -, fuly), 91(X%,¥),-- ., 9 (X,¥))

* Initial attempt: Treat constraints and likelihood as a function of y, and perform gradient descent ony

 Optimization problem with constraints

arg min —alogp(y[x) + Y Nifi(y) + Y 1g;(x.y),
j=1

Yy )
1=1
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Issues with vanilla formulation
+Z/1 9;(%,y).

arg min —« log p(y|x) + A\
gmi gp(ylx) Z iy

 Who decides weights over the constraints? different constraints may have
different scales, some might be objective

* Non-convex “Pareto-front”, hard to achieve

 Reformulate again as a Lagrangian optimization problem:
arg min — log P(y|x) subject to
y
fily) <e€,ied{l, - u}

Upper limits are easy to manually specify (e.g. probability of formality > 0.5)
than weights

https://fivethirtyeight.com/wp-content/uploads/2015/02/silver-feature-pareto-1.png?w=305
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Lagrangian formulation

e |agrangian formulation

arg min — log P(y|x) subject to
y

LY, A1y oy Ay Jo1y - fhy) = — log p(y|x) — Z Nilei — fily)) — Z (&5 — g5z, y)) fily) <e€nied{l, -, u}
i=1 i=1 . |
/ gi(x,y) < &.j€{l,--,vh

u v

* Jypical solution:
e AIgming maxy,>0.u,>0 £(¥, A, 1)
* First solve the dual function to find Lagrangians, then plug Lagrangians to minimize
* Similar issue as the previous formulation: first clipping the constraints is not working
* Final approach:
. Method of multipliers: jointly optimize for both
* YW =y Y VLN = AT VAL = T 4 2V L

* Increase the value of the multiplier with each gradient step as long as the constraint is violated (make the
optimization process take constraints more seriously)
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Algorithm 1: MUCOCQO: detailed decoding algorithm

Input: input sequence x, output length L, base model G, attribute functions f; and g; and their
respective 1nitial and final thresholds, threshold update schedule, step sizes 7)1, 12;

Result: output sequence y

Forall k € {1,..., L}, initialize y} uniformly over Ay ;

Foralli € {1,...u}and j € {1...v}, initialize A, z1; as 0 and the thresholds ¢}, £ with the
given values ;

fort=1,... MAXSTEPS do

// forward pass

for all k£, compute 7, = one-hot(arg max 7, ) and compute the loss £ (using (3));

// backward pass

~ o p t—1 _ oL wt—1 _ 9L wit—1 _ oL .
for all £, 7 and j, compute Vm = 95 V Vv V/_Lj = o

// Update the parameters

update gjf,:’“) X g},&t) exp(l —m V. L);

update A! = max(0, /\,f-'_1 + 15V, L), and pf = max(0, ,u.:{_l + 12V ., L);
update €;, £’ following the threshold update schedule

end

can select one of  peturn arg ming{— log p(y ) |x) : Vi, f;(3") < €, V5, g;(x, ") < &};

“Pareto-optimal solutions

12



Experiments

* Style transfer: make a given sentence more formal (give me that data —> please share the data)

* Task requirements:
* Attribute transfer: the transferred sentence should be formal
* Content preservation: the transferred sentence should not lose the original meaning

* Constraints, one per requirement:

» —log(pryma(y)) < —10g(0.5) =0.3

- Force pg,.mq(Y) to be greater than 0.5
* Prormai(y) UsINg a classifier y
o Start with —log(pfm,mal(y)) < 10 and slowly anneal

« Cosine similarity: USIM(x, y)
« —USIM(x,y) < —0.15

13



Results

Content Content

Preservation Preservation

(w.r.t. input) (w.r.t. ref)
Method Constraint Fluency Transfer

WSIM USIM WSIM USIM

STRAP None 91% 78% 0.69 0.77 0.72 0.80
FUDGE FORMAL(Y) 90% 85% 0.71 0.77 0.73 0.81
MuUCoOCO FORMALC(Y) 89% 93% 0.67 0.75 0.72 0.78
MUCOCO  USIM(X,y) 92 % 85% 0.71 0.78 0.74 0.81
MuCoCO  USIM(X, y), WMD(X, y) 92% 87 % 0.73 0.79 0.77 0.86
MUCOCO  SIM(X,y), WMD(X, y), FORMAL(Y) 93% 92 % 0.71 0.79 0.75 0.84

Table 1: Automatic evaluation of fluency, formality transfer, and content preservation for informal-to-
formal style transfer models.
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CoLD Decoding:
Energy-based Constrained Text Generation with Langevin Dynamics

Lianhui Qin! Sean Welleck ! > Daniel Khashabi’ Yejin Choi '
1Paul G. Allen School of Computer Science & Engineering, University of Washington

2 Allen Institute for Artificial Intelligence
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Introduction

e COLD decoding is a flexible framework that can be applied directly to off-the-
shelf left-to-right language models without the need for any task-specific fine-
tuning

® Setup:
e Given
e A language model
® A set of constraints specified as differentiable functions of output

e (Generate samples that satisfy the constrain

16



Background

Energy distribution

* Energy-based distribution

py) = -
. —E(y)
2., CXp

* E(y) is the “energy function”
* Lower (more negative) energy states are more likely

* Terminology from physics, low-value energy states are preferable (second-law of
thermodynamics)

* E(y) can be arbitrary in principle

 We don’t care about the actual distribution typically, only the samples

17



Encoding constraints In energy function

« Let f,(y) be a constraint function, which is high if constraint is better satisfied

EXp Zi )‘lfz(y)
Z

« E.g., number of tokens in y that are one of {cat, dog, elephant}, more the better

. p(y) =

e Desired:

* A way to draw samples from the energy function

 Langevin dynamics

« MCMC method, used for sampling from energy functions

* Langevin dynamics is motivated and originally derived as a discretization of a stochastic differential equation whose equilibrium distribution is the posterior distribution

. yn+1 P yn . ;,IvyE(yn) + e
* n: step size, ¢ ~ N(0,0)

. Welling & Teh 2011 prove that lim y" ~ p

n—oo

* Problem as usual:

V,E(y)

Differentiate w.r.t. concrete text V

Same solution as used by Kumar 2021 —> soft tokens x

Same constraint; the constrain functions need to be differentiable

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf 18



Target constrained

- ™) distribution

Initial distribution

OLD decoding overview

X
Langevin Dynamics '
. LM
S,(n+l) y(n) n V)ﬁ-E(S’(n)) + €(ﬂ)
-—) —) =mp Discrete
Text
f=1 2 3T n= 1 2 3 = N ~
Soft Sequence y(() | p Soft Sequence y Topk-Mask  Masked Sequence
I l I
Initialization Energy-based sampling Discretization

Initialization. We initialize the soft sequence y by running
greedy decoding with the LM pp v to obtain output logits.
In our preliminary experiments, the initialization strategy
had limited influence on the generation results.

19

Algorithm 1 Constrained Decoding w/ Langevin Dynamics.

input Constraints { f; }, length 7', iterations N.
output Sample sequence y.
Sfﬁo) < init() forall positiont // init soft-tokens

for n € {1,..,N} do
E™ «— Ey'™ {f}) 1/ compute energy (§3.2)

gty — v, B0 4 ™ forallt // update
soft tokens (Eq.2)

end for
y: =  argmax, topk-filter (5’9’ ) ( U)> for all t //
discretize (Eq.6)

return: y = (1/1: oo :‘.1/'1')




From soft-tokens to hard tokens

® T p—k I I I k TR Target constrained
O aS Initial distribution -~ ~ fidghay hia X
| o _ Langevin Dynamics A
Yyt = argmax,cyr yi(v). o o & LM
5,(11-&-1) - 5,(11) - V‘E(S(n)) + 6.‘(”') !
- —) X oot —p -+ =mp Discrete
Text
f=1 2 3T n= 1 2 3 =+ N ~(N) 7
Soft Sequence 5,(()) . y Soft Sequence ¥ Topk-Mask  Masked Sequence Y
| | |
Initialization Energy-based sampling Discretization

» Essentially, the language model gives an idea of what is right
‘Questionable, and ablations reveal that this is critical for their method

20



Experiments

Abductive reasoning

» Given a beginning (x;: Tim wanted to learn astronomy) and end sentence (x.Tim
worked hard in school to become one), generate a bridge sentence that completes
the reasoning chain

 y: Tim took admission in an astronomy program

e Constraints:

e The generated text y should have a high-likelihood given the left and right sentences

« y should predict x,

 There should be some common keywords between y, x;, x,

21



Example of constraints

¢ SOft'ﬂuency constraint: fim(y YYPLM (v]y <¢) log softmax (y;(v))

t=1veV

 Jo be used in conjunction with other constraints

/)l:"l‘l( ) |5r<t-)

|
X, : has eight | = e i f-orem
- ?S el? ;gs e e sins  Soup Y+ - never : gave UP:
—CrossEntropy . T - “empe---
(B.B T “"' Soft Match Soft Match

[T1T]

T "' ~~ gave up 'l
| e T TR
SOu -
I : i TF-hand y: ol 1 . E
—S ftm i’, . n \ 1 1 [ 1 Pl ‘
J ° ‘- =’ L---. 1 — 1
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Experiments

Counterfactual story generation

E(y) =AY fon(3:x10) + A8 (3 %) 4+ Ao forea (73 %07)

-+ )\Cfsim(y; kW(XT) — kW(X[))

Automatic Eval

Human Eval

Models _ \ Rt , ATl .
BLEU, ROUGE.L CIDEr BERTScore | Grammar cht-;,.ohcrcn(,c Rlcht»whcrcncc Overall c0h¢rcncc
(x1y) (¥YXr) (X1yx;)
LEFT-ONLY 0.88 16.26 3.49 38.48 4.57 3.95 2.68 2.70
DELOREAN [.60 19.06 7.88 41.74 4.30 4.23 2.83 2.87
COLD (ours) 1.79 19.50 10.68 42.67 b 4.00 3.06 2.96

* A number of other shortcuts to get it to work

 Hyper-parameters appear to be highly tuned (0.3, 0.2, 0.02, 0.48), but no details how

 The method only generates 10 tokens, and the rest are generated by standard language models

23



Discussion

e Summary

* There are methods that can generate samples from pre-trained language models that satisfy certain constraints, without re-training
* Difference between two works?

* Formulation and method, but conceptually identical

 COLD allows drawing multiple samples, but also possible with MuCOCO

« MuCOCO allows specifying different constraints on weights
 Non-differentiable objectives

e Uses continuous sampling from black box models, but extremely slow

Mix and Match: Learning-free Controllable Text Generation
using Energy Language Models

Fatemehsadat Mireshghallah!, Kartik Goyal’, Taylor Berg-Kirkpatrick'
I ' University of California San Diego, * Toyota Technological Institute at Chicago (TTIC)
[fatemeh, tberg]@ucsd.edu, kartikgolttic.edu
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Modeling dynamics of text using
stochastic processes



Published as a conference paper at ICLR 2022

[LANGUAGE MODELING VIA STOCHASTIC PROCESSES

Rose E. Wang, Esin Durmus, Noah Goodman, Tatsunori B. Hashimoto
Stanford University
{rewang, edurmus, ngoodman,thashim}@stanford.edu
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Introduction

* |ong-form generation is important
e Story generation, document generation
* Current language models struggle
* Possible reason:
» Auto-regressive models struggle to attend to longer sequences

* No notion of “evolving” context

27



Overview

* (Generate hidden states for each sentence of a long document
* [he representations should vary smoothly

* The representations should be grounded in the start and beginning

/4 ' >

28



Brownian motion

29



Brownian motion

Theorem 2.1. There exists a probability distribution over the set of con- *g e o °° i °oe &
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Brownian bridge

* We are given coarse points, and we want to “fill” the
path between them with Brownian motion

{ t, *3
* Key Idea: learn latents that create a brownian motion
between two given points
| t t IL(T — f) A M
p(z¢|z0, 27) = J\"”((l — —)75() + =21, — ) 1 W
T T T : 5 .
\\“’W I

No variance at the beginning or the end
The point is “attached”
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Method outline

 (Contrastive learning:
« Three sentences X, X,, X from a “"document” in a sequence with hidden representations z;, z,, Zr

* A random sentence x’ with embedding z’

0O: [USER] Hello, I'd like to buy tickets for tomorrow.
t: [ASSISTANT] What movie theater do you prefer?
T: [USER] Could you confirm my tickets just in case?

X': [USER] Hi, I'm looking to purchase tickets for my family.

zy \_\__j, z! e 1o exp(d(ze, pt))

e i exp(d(z¢, ue)) + exp(d(2', pe))

exp(d(:l..'m Lty LT f9))
Z eXI)(d(::I::O, Ty, x7s fo))

(xo,z,r,xT)EDB

fo(xy) — (1 = %) fo(xo) — %fe(ilf'r)

N —

- e _/

32

Ly =Eyx |—log . where

o

d(xo, x¢, x7; fo) = —

1
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Generating text

* [rain a model to generate the sentences conditioned on the latent
embeddings

* During inference, generate text conditioned on these latent embeddings

33



Experiments

e Datasets

* Wikisection: wikipedia articles on cities split by section, each article has four
sections (abstract, history, geography, demographics)

 Taskmaster-2 (TM-2) (Byrne et al., 2019) contains conversations on finding
restaurants between an assistant and a user.

* TicketTalk (Byrne et al., 2021) contains conversations on booking movie
tickets between an assistant and a user. The assistant’s and user’s turns are
similarly marked as in TM-2.

« ROC Stories (Mostafazadeh et al., 2016) is a short 5-sentence stories
dataset.

34



Results

 Can Time Control model local text dynamics?

» Encode two sentences Xx,, x, ; using their method and the baselines

 Order is shuffled, and encodings z,, z,, ;, are fed to a classifier

Wikisection TM-2 TicketTalk

Method k=5 k= 10 k=5 k=10 k=5 k= 10
GPT2 50.3 + 5.8 5024+6.3 | 55.7+53 63.6+7.3 | 54.7+6.1 65.0=+8.1
Classical methods BERT 50.9 4+ 4.9 478490 | 688+35 80.7+3.8 | 684+51 80.4+6.3
ALBERT | 499+121 496+180 | 81.6+40 86.1+7.3 | 784+6.7 894-+3.1
S-BERT 50.8 + 6.0 180+91 | 73.4+35 833+43 | 721+53 84.2+5.2
Sim-CSE | 49.1 + 6.4 A814+85 | 75.4+38 862+39 | 751+59 852+3.1
VAE (8) 495+ 5.5 5054+51 | 505+44 51.5+6.0 | 49.9+1.0 512+ 1.0
VAE (16) | 50.1+ 5.8 513447 | 48.84+4.8 50.8449 | 50.1+1.0 49.5+ 1.0
VAE(32) | 50.5+5.1 50.0£ 6.0 | 48.0+5.1 47.3+59 | 50.0+1.0 493+ 1.0
ID (8) 19.8 +5.9 50.14+50 | 60.3+52 65.2+6.8 | 592+1.9 665+ 1.1
Implicit dynamics D (16) 53.3+54 558462 | 605450 677468 | 603410 684+ 6.4
ID (32) 50.0 &+ 5.0 5014+50 | 604453 67.6+7.1 | 61.0+1.0 67.9+6.5
L . . BM (8) 198+54  50.0+54 | 498454 49.9+52 | 49.7+50  50.6 + 5.8
(e, w3 fo) = =5 51l folzvr) = fo(@i) Iz Brownian motion  pMm(16) 50.3 &+ 5.5 505+52 | 499+43 51.1+6.0 | 50.3+4.6 50.8+5.5
BM (32) 493+ 5.6 A88+58 | 4954+47 49.6+52 | 495+56  49.1 +6.1
_ o d TC (8) 19023 +572 483+6.8 | T7T.6+7.8 87.7+6.9 | 71.6+2.9 82.9+4.1
B U I A A W SN : TC(16) | 57.25+530 658+54 | 782+81 880+7.1 | 71.3+3.3 82.9+4.1

d(zg, ¢, 273 fo) 5| fo(xt) 1 fo(xo) fo(zr)

207 =~ < T> a 2 Their method TC (32) 50.1 + 4.8 498 4+58 | 77 9+79 879+74 | 720+39 844+39
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Results
Infilling

» Flve-sentence stories: X, X{, X5, X3, X4

Method BLEU (7)
LM 1.54 + 0.02
« (Generate X9 | X0os X15 X35 Xy ILM 3.03 4+ 0.11
VAE (8) | 0.75+0.17
VAE (16) | 0.62 4 0.07
32) | 0.03+0.0
. < X! | — x3]| Lt
Encode 2y < Xy | | X1, I < X3 [ X4 —— ———
ID (8) 2.9+ 0.3
ID (16) 0.9 + 0.0
ID(32) 1.0 £ 0.1
TC (8) 3.80 =+ 0.06
TC (16) | 4.30 4+ 0.02
TC (32) 5.4+ 0.11

Table 2: BLEU on ground
truth infill and generated sen-

tence.
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Potential next steps

* Aligning brownian processes across seguences

* Pinning down to more than three points?

37



FLOWGEN: Fast and slow graph generation

Aman Madaan, Yiming Yang
(WIP)
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Graph generation

 Overview: learn a model for a (typically large) graph
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Evaluating graph generation models

e Structural: how closely does G’ look like G?
o Max degree
o Triangle count
o Clustering coefficient

o Can be gamed by a model that memorizes all the edges

* Downstream task:
* Tests generalization

o During training, entire G is not used and some edges are held out

o What % of those edges are generated in G’?

40



Autoregressive graph generation (our method)
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Autoregressive graph generation

Results

* QOutperforms existing baselines + Not sensitive to hyper-parameters tuning

Method CORAML CITESEER POLBLOGS
Adamic/Adar 02.16 88.69 85.43
DC-SBM 96.03 94.77 95.46
node2vec 02.19 05.29 85.10
VGAE 95.79 05.11 93.73
NetGAN 05.19 96.30 95.51
FLOWGEN (ours) 96.93 97.03 95.00

Table 3: Area under the curve (AUC) for link prediction.
FLOWGEN outperforms or matches strong baselines.

NrLcc Ercc
CORAML 2,810 7,981
CITESEER 2,110 3,757
POLBLOGS 1,222 16,714

Graph Max. Assort- Triangle Power  Inter-comm Intra-comm. Cluster-  Charac.
P degree ativity Count law exp. unity density unity denisty ing coeff. path len.
CORA-ML 240 -0.075 2,814 1.860 4.3e-4 1.7e-3 2.73e-3 5.61
Netgan 233 -0.066 1,588 1.793 6.0c-4 1.4e-3 2.44e-3 5.20
FLOWGEN (ours) | 224 -0.080 2,123 1.857 S.4e-4 1.3e-3 2.50e-3 35.40

Table 2: Comparison of FLOWGEN with Netgan for structural metrics for CORAML. The ground
truth values are listed in the top-row, and the value closer to the ground truth is highlighted in bold.
FLOWGEN closely matches the ground truth graph on a larger number of metrics.
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Dual-process theory of mind

« Humans use different metaphorical parts of the brain to solve
problems of various difficulties:

 System 1: fast, instinctive, pattern-matcher, good for easy
problems

 System 2: slow, analytical, deep-thinker, good for hard problems

* Current machine learning models:

[DEACIN IS

* Always use the same hammer for problems of all levels of
difficulty KAHNEMAN

* Practical implications:
 More efficient systems

* Critical in the age of large language models
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FLOWGEN

Generating graphs fast and slow

* Our method relies on using random walks for reconstructing

the graph
« Arandom walk begins from a fixed, given node v, 2
Ghent {.'O '
» Generating the 2nd point requires reasoning about 2-hops 9 o
p(vy [ vy
» Generating the 3rd point requires p(v5 | v,, ;) K, ®

 Intuitively, the process gets more difficult with sequence

* Need assistance only when generating walks in the later part
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FLOWGEN

Overview

Train two models: fast (transformer with 1 layer) and slow (transformer with 6 layers)

Start random walk generation with a fast model, switch to a slow model when the
walk is starting to feel lost

Switch

 Easy because of auto-regressive setup: the walk generated so far is a prefix to the
slower model

When the walk is starting to feel lost

How Can We Know When Language Models Know?
On the Calibration of Language Models for Question Answering

* |n general, known to be a challenging issue

Zhengbao Jiang', Jun Araki‘, Haibo Ding', Graham Neubig’
"Languages Technologies Institute, Carnegie Mellon University, United States
'Bosch Research, United States

* Relates to uncertainty estimation, model calibration ol ienghed, gaabigHes. o o

{jun.araki,haibo.ding}@us.bosch.com
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FLOWGEN

How do we know when the model is getting lost?

» Define N = [v;,v;,,V;15, V;.3] to be a neighborhood of four consecutive nodes in the true graph, &£ to be all the random walks of
length 4

« We want an estimate of P(N € X)

« For smaller graphs, &£ can be enumerated and fed to a balanced-binary tree for efficient search (aka hashmap)

* Not an option for our case

» Graphs are large, exponential possible £

* Can use distributed lookup caches, but if switch detection takes all the time, we will miss out on any gains by fast + slow
interplay

» Want a quick estimate of P(N € X)
* Noisy estimate is okay

* Bloom-filters are meant for exactly this use case

* Interpretation: random walks are brownian motion in the limit, we want to determine if a set of consecutive points was sampled
from the process defining brownian motion
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Bloom filters

* Probabilistic data structures for efficiently answering set-membership queries

e Parameters:

7
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* K hash functions i T e
1 ) A : O
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—kn
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FLOWGEN
Detecting exploration

» Store a large fraction of neighborhoods in the training data in a bloom filter 98

. . 100
* Approximately 1 bit per walk

* 130x less space to store the entire graph for doing search queries
« Random walk can be in “exploring” or “exploiting” phase:

« When a neighborhood is not found in &, random walk is “exploring”, otherwise random walk is
exploiting

o0
« Let EL(N) be 1 if the neighborhood is likely to be exploratory

dEL(N)
dt

rate of change of exploration with time

. Switch atf = argmax, y
[

* Generate 10k walks from fast and slow model, detect when they switch by finding the rate of new
neighborhoods
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Results

Same accuracy at 50% less time

Time
—
|
l

FAST SLOW FLOWGEN
CORAML (500k) 76.8 (288) 92.2 (806) 90.8 (484)
CORAML (100M) 91.5 (50k) 96.7 (180k) 96.9 (110k)
CITESEER (500k) 90.9 (313) 94.6 (862) 93.3 (687)
CITESEER (100M) 96.1 (62k) 96.8 (172k) 96.5 (137k)
POLBLOGS (500k) 61.9 (309) 85.4(854) 86.5 (686)
POLBLOGS (100M) 66.2 (48k) 93.8 (156k) 93.8 (108k)
100 | |
P N — & o S 2y
d/ A < —
90
=
<
80 ——  FAST
—o— FLOWGEN
———  SLOW
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Fast Slow Fast-Slow Fast Slow Fast-Slow Fast Slow
CORA-ML POLBLOGS CITESEER

Fast-Slow

Figure 4: Average precision vs. time taken for the three settings. The FAST and SLOW model speed-
accuracy trade-off is apparent: FAST model is fast but less accurate (average precision ~ 75%,
compared to the SLOW model which 1s slower but has average precision of 92%. FLOW combines
the strengths of the two modes: it achieves an accuracy of 90% while being ~ 50% faster than the
SLOW model. Note that the time 1s normalized relative to SLOW (SLOW takes 100% of the time).
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Take home message

 Beyond vanilla seg2seg
* (Gradient-based optimization
 Sampling from energy models
» Gradient-free sampling
 Generation as brownian process
» Fast-slow generation with bloom filters
* Next steps:
 (Gradient based methods that actually work

* Fitting a brownian motion model to the random walk for determining the switch point more efficiently
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