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Beyond conventional text 
generation
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LM-based generation models
• Typically involve a transformer-based language model + large parallel corpus


• Established 

• Pre-train —> Fine-tune —> test


• Popular setups 

• Unsupervised


• GANs


• Few-shot


• Retrieval-augmented 


• Plan-based


• Structured-generation


• VAE/De-noising objectives


• Structure-guided generation * 


• Memory-guided generation *


• Today 

• Few things not on the list


• Text generation as optimization (aka Gradient-based approaches)


• Stochastic processes
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Outline

• Part A:


• Text generation as optimization


• Part B


• Modeling dynamics of text using stochastic processes


• Part C


• Fast-slow graph generation
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Text generation as optimization
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Text generation as optimization
• Given 


• A large pre-trained language model 


• A set of constraints, specified as functions  


•  


• Constraints on inputs  and output  (e.g., semantic similarity)


•  


• Constraints on just the output (e.g., fluency)


• Constraints <=> Desired attributes


• Generate 


• samples (text) from  without re-training that satisfy the constraints 


• Admits several popular controllable text generation problems:


• Make text polite


• Include certain words in the output


• Condition output on certain keywords

pθ

f1, f2, …, fm, g1, g2, …, gn

g : X × Y → R

x y

f : Y → R

pθ
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Text generation as optimization: y as a parameter 
• 


• Given an initial 


• 


• But y is discrete…


• Formality transfer:


• Given y = “give me the data” generate “please share the data”


• A formality constraint (e.g.,  measures how polite the sentence  is)


• What is ??


• The intuition is well-motivated (how to change “give me the data” so that loss 
is lower), but not differentiable 

ℒ(x, y) = f1(y) + g1(x, y) + pθ(y ∣ x)

y0

yt+1 ← yt − η∇y(L)

f1(y) y

∇yL
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Recurring theme: y as a parameter 
• Instead,  is treated as a simplex ( , , |V| is the 

vocabulary size)


• In short, maintain a continuous representation of  so that it can be 
back propagated


•  a tensor like any other parameter, can be attached to the 
computation graph and backpropagated through


• Other solutions like Gumbel-softmax 

yi 0 ≤ yil ≤ 1
|V|

∑
l=1

yil = 1

y

y
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Neurips 2021
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Formulation
• Decoding as an optimization problem:


• The language model will give some distribution over the input 


• Improve samples drawn from   without changing 


• Initial attempt: Treat constraints and likelihood as a function of y, and perform gradient descent on y


• Optimization problem with constraints 


•

pθ(y ∣ x)

pθ(y ∣ x) θ
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Issues with vanilla formulation

• Who decides weights over the constraints? different constraints may have 
different scales, some might be objective 

• Non-convex “Pareto-front”, hard to achieve 

• Reformulate again as a Lagrangian optimization problem:


• Upper limits are easy to manually specify (e.g. probability of formality > 0.5) 
than weights

https://fivethirtyeight.com/wp-content/uploads/2015/02/silver-feature-pareto-1.png?w=305
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Lagrangian formulation
• Lagrangian formulation


• Typical solution:


• 


• First solve the dual function to find Lagrangians, then plug Lagrangians to minimize


• Similar issue as the previous formulation: first clipping the constraints is not working 

• Final approach:


• Method of multipliers: jointly optimize for both


•  


• Increase the value of the multiplier with each gradient step as long as the constraint is violated (make the 
optimization process take constraints more seriously)
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Can select one of 

“Pareto-optimal solutions”
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Experiments
• Style transfer: make a given sentence more formal (give me that data —> please share the data)


• Task requirements:


• Attribute transfer: the transferred sentence should be formal


• Content preservation: the transferred sentence should not lose the original meaning


• Constraints, one per requirement: 


•  = 0.3


• Force  to be greater than 0.5 


•  using a classifier 


• Start with  and slowly anneal


•  Cosine similarity: 


•

−log(pformal(y)) < − log(0.5)

pformal(y)

pformal(y) y

−log(pformal(y)) < 10

USIM(x, y)

−USIM(x, y) < − 0.15
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Results
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Introduction
• COLD decoding is a flexible framework that can be applied directly to off-the-

shelf left-to-right language models without the need for any task-specific fine-
tuning


• Setup:


• Given 


• A language model


• A set of constraints specified as differentiable functions of output


• Generate samples that satisfy the constrain
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Background
Energy distribution

• Energy-based distribution


• 


• E(y) is the “energy function”


• Lower (more negative) energy states are more likely


• Terminology from physics, low-value energy states are preferable (second-law of 
thermodynamics)


• E(y) can be arbitrary in principle


• We don’t care about the actual distribution typically, only the samples

p(y) =
exp−E(y)

∑y exp−E(y)
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Encoding constraints in energy function
• Let  be a constraint function, which is high if constraint is better satisfied  


• 


• E.g., number of tokens in  that are one of {cat, dog, elephant}, more the better


• Desired: 

• A way to draw samples from the energy function 


• Langevin dynamics 

• MCMC method, used for sampling from energy functions 

• Langevin dynamics is motivated and originally derived as a discretization of a stochastic differential equation whose equilibrium distribution is the posterior distribution


• 


• : step size, 


• Welling & Teh 2011 prove that 


• Problem as usual: 


• 


• Differentiate w.r.t. concrete text


• Same solution as used by Kumar 2021 —> soft tokens


• Same constraint: the constrain functions need to be differentiable


fi(y)

p(y) =
exp∑i λi fi(y)

Z
y

yn+1 ← yn − η∇yE(yn) + ϵn

η ϵ ∼ 𝒩(0,σ)

lim
n→∞

yn ∼ p

∇yE(y)

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf 18



COLD decoding overview
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From soft-tokens to hard tokens
• Top-k mask 
 
 
 
 

• Essentially, the language model gives an idea of what is right

•Questionable, and ablations reveal that this is critical for their method 
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Experiments
Abductive reasoning

• Given a beginning ( : Tim wanted to learn astronomy) and end sentence ( Tim 
worked hard in school to become one), generate a bridge sentence that completes 
the reasoning chain


•  : Tim took admission in an astronomy program 

• Constraints:


• The generated text  should have a high-likelihood given the left and right sentences


•  should predict 


• There should be some common keywords between   , , 

xl xr

ỹ

ỹ

ỹ xr

ỹ xl xr
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Example of constraints 

• Soft-fluency constraint:


• To be used in conjunction with other constraints 
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Experiments
Counterfactual story generation

• A number of other shortcuts to get it to work


• Hyper-parameters appear to be highly tuned (0.3, 0.2, 0.02, 0.48), but no details how


• The method only generates 10 tokens, and the rest are generated by standard language models
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Discussion
• Summary 

• There are methods that can generate samples from pre-trained language models that satisfy certain constraints, without re-training 


• Difference between two works? 

• Formulation and method, but conceptually identical


• COLD allows drawing multiple samples, but also possible with MuCOCO


• MuCOCO allows specifying different constraints on weights


• Non-differentiable objectives 

• Uses continuous sampling from black box models, but extremely slow
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Modeling dynamics of text using 
stochastic processes
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Introduction
• Long-form generation is important


• Story generation, document generation


• Current language models struggle


• Possible reason:


• Auto-regressive models struggle to attend to longer sequences


• No notion of “evolving” context
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Overview
• Generate hidden states for each sentence of a long document 

• The representations should vary smoothly  

• The representations should be grounded in the start and beginning 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Brownian motion
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Brownian motion

https://ocw.mit.edu/courses/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/3b97c6b0c282dd9dc024c4c7ffe3fba8_MIT18_S096F13_lecnote17.pdf

Distribution given by this theorem is brownian motion.
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Brownian bridge
• We are given coarse points, and we want to “fill” the 

path between them with Brownian motion


• key idea: learn latents that create a brownian motion 
between two given points

No variance at the beginning or the end 
The point is “attached”

31



Method outline
• Contrastive learning: 


• Three sentences  from a “document” in a sequence with hidden representations 


• A random sentence  with embedding z’

x0, xt, xT z0, zt, zT

x′￼
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Generating text

• Train a model to generate the sentences conditioned on the latent 
embeddings


• During inference, generate text conditioned on these latent embeddings
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Experiments
• Datasets


• Wikisection: wikipedia articles on cities split by section, each article has four 
sections (abstract, history, geography, demographics)


• Taskmaster-2 (TM-2) (Byrne et al., 2019) contains conversations on finding 
restaurants between an assistant and a user.


• TicketTalk (Byrne et al., 2021) contains conversations on booking movie 
tickets between an assistant and a user. The assistant’s and user’s turns are 
similarly marked as in TM-2.


• ROC Stories (Mostafazadeh et al., 2016) is a short 5-sentence stories 
dataset. 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Results
• Can Time Control model local text dynamics?


• Encode two sentences  using their method and the baselines


• Order is shuffled, and encodings  are fed to a classifier

xt, xt+k

zt, zt+k

Their method

Brownian motion

Implicit dynamics

Classical methods
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Results
Infilling

• Five-sentence stories: 


• Generate 


• Encode , 

x0, x1, x2, x3, x4

x2 ∣ x0, x1, x3, x4

z0 ← x0 | |x1 zT ← x3 | |x4
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Potential next steps
• Aligning brownian processes across sequences


• Pinning down to more than three points?
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Aman Madaan, Yiming Yang  
(WIP)
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Graph generation
• Overview: learn a model for a (typically large) graph

pθ
Training

Inference
pθ

Initial nodes Reconstructed graph
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Evaluating graph generation models
• Structural: how closely does G’ look like G?

◦ Max degree 

◦ Triangle count


◦ Clustering coefficient


◦ Can be gamed by a model that memorizes all the edges 

• Downstream task:

• Tests generalization 

◦ During training, entire G is not used and some edges are held out 

◦What % of those edges are generated in G’?
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Autoregressive graph generation (our method)

N layer transformer 
architecture with 

self-attention

Alternative interpretation: 
matrix completion
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Autoregressive graph generation
Results
• Outperforms existing baselines + Not sensitive to hyper-parameters tuning
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2 * 2 = ?
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19 * 3 = ?
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Dual-process theory of mind
• Humans use different metaphorical parts of the brain to solve 

problems of various difficulties:


• System 1: fast, instinctive, pattern-matcher, good for easy 
problems


• System 2: slow, analytical, deep-thinker, good for hard problems


• Current machine learning models: 


• Always use the same hammer for problems of all levels of 
difficulty 


• Practical implications:


• More efficient systems


• Critical in the age of large language models
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FLOWGEN
Generating graphs fast and slow

• Our method relies on using random walks for reconstructing 
the graph 

• A random walk begins from a fixed, given node 


• Generating the 2nd point requires reasoning about 2-hops 



• Generating the 3rd point requires 


• Intuitively, the process gets more difficult with sequence


• Need assistance only when generating walks in the later part

v1

p(v2 ∣ v1)

p(v3 ∣ v2, v1)
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FLOWGEN
Overview
• Train two models: fast (transformer with 1 layer) and slow (transformer with 6 layers)


• Start random walk generation with a fast model, switch to a slow model when the 
walk is starting to feel lost 

• Switch 

• Easy because of auto-regressive setup: the walk generated so far is a prefix to the 
slower model 

• When the walk is starting to feel lost 

• In general, known to be a challenging issue


• Relates to uncertainty estimation, model calibration 
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FLOWGEN
How do we know when the model is getting lost?
• Define  to be a neighborhood of four consecutive nodes in the true graph,  to be all the random walks of 

length 4


• We want an estimate of 


• For smaller graphs,  can be enumerated and fed to a balanced-binary tree for efficient search (aka hashmap)


• Not an option for our case


• Graphs are large, exponential possible 


• Can use distributed lookup caches, but if switch detection takes all the time, we will miss out on any gains by fast + slow 
interplay


• Want a quick estimate of 


• Noisy estimate is okay 


• Bloom-filters are meant for exactly this use case 


• Interpretation: random walks are brownian motion in the limit, we want to determine if a set of consecutive points was sampled 
from the process defining brownian motion

N = [vi, vi+1, vi+2, vi+3] ℛ

P(N ∈ ℛ)

ℛ

ℛ

P(N ∈ ℛ)

48



Bloom filters
• Probabilistic data structures for efficiently answering set-membership queries


• Parameters:


• m bits


• k hash functions 


• n elements to be inserted


• Tunable False positive rate:   ϵ ≈ (1 − e
−kn
m )k

https://freecontent.manning.com/wp-content/uploads/bloom-filters_02.png49



FLOWGEN
Detecting exploration
• Store a large fraction of neighborhoods in the training data in a bloom filter 


• Approximately 1 bit per walk


• 130x less space to store the entire graph for doing search queries


• Random walk can be in “exploring” or “exploiting” phase:


• When a neighborhood is not found in , random walk is “exploring”, otherwise random walk is 
exploiting


• Let  be 1 if the neighborhood is likely to be exploratory


•  rate of change of exploration with time


• Switch at 


• Generate 10k walks from fast and slow model, detect when they switch by finding the rate of new 
neighborhoods

ℬ

ℬ

EL(N)
dEL(N)

dt

t = argmaxt
dEL(N)

dt
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Results
Same accuracy at 50% less time
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Take home message 

• Beyond vanilla seq2seq


• Gradient-based optimization


• Sampling from energy models


• Gradient-free sampling


• Generation as brownian process


• Fast-slow generation with bloom filters


• Next steps:


• Gradient based methods that actually work


• Fitting a brownian motion model to the random walk for determining the switch point more efficiently
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