
Aman @ Yiming Yang Lab seminar, 4/5/2022

Beyond conventional text
generation

1

LM-based generation models
• Typically involve a transformer-based language model + large parallel corpus

• Established

• Pre-train —> Fine-tune —> test

• Popular setups

• Unsupervised

• GANs

• Few-shot

• Retrieval-augmented

• Plan-based

• Structured-generation

• VAE/De-noising objectives

• Structure-guided generation *

• Memory-guided generation *

• Today

• Few things not on the list

• Text generation as optimization (aka Gradient-based approaches)

• Stochastic processes

2

Outline

• Part A:

• Text generation as optimization

• Part B

• Modeling dynamics of text using stochastic processes

• Part C

• Fast-slow graph generation

3

Text generation as optimization

4

Text generation as optimization
• Given

• A large pre-trained language model

• A set of constraints, specified as functions

•

• Constraints on inputs and output (e.g., semantic similarity)

•

• Constraints on just the output (e.g., fluency)

• Constraints <=> Desired attributes

• Generate

• samples (text) from without re-training that satisfy the constraints

• Admits several popular controllable text generation problems:

• Make text polite

• Include certain words in the output

• Condition output on certain keywords

pθ

f1, f2, …, fm, g1, g2, …, gn

g : X × Y → R

x y

f : Y → R

pθ

5

Text generation as optimization: y as a parameter
•

• Given an initial

•

• But y is discrete…

• Formality transfer:

• Given y = “give me the data” generate “please share the data”

• A formality constraint (e.g., measures how polite the sentence is)

• What is ??

• The intuition is well-motivated (how to change “give me the data” so that loss
is lower), but not differentiable

ℒ(x, y) = f1(y) + g1(x, y) + pθ(y ∣ x)

y0

yt+1 ← yt − η∇y(L)

f1(y) y

∇yL

6

Recurring theme: y as a parameter
• Instead, is treated as a simplex (, , |V| is the

vocabulary size)

• In short, maintain a continuous representation of so that it can be
back propagated

• a tensor like any other parameter, can be attached to the
computation graph and backpropagated through

• Other solutions like Gumbel-softmax

yi 0 ≤ yil ≤ 1
|V|

∑
l=1

yil = 1

y

y

EMNLP 2017

.

.

.

.

.

.

.

.

.

.

.

.

give me the data

1

2

|V| - 1

|V|

7

Neurips 2021

8

Formulation
• Decoding as an optimization problem:

• The language model will give some distribution over the input

• Improve samples drawn from without changing

• Initial attempt: Treat constraints and likelihood as a function of y, and perform gradient descent on y

• Optimization problem with constraints

•

pθ(y ∣ x)

pθ(y ∣ x) θ

9

Issues with vanilla formulation

• Who decides weights over the constraints? different constraints may have
different scales, some might be objective 

• Non-convex “Pareto-front”, hard to achieve 

• Reformulate again as a Lagrangian optimization problem:

• Upper limits are easy to manually specify (e.g. probability of formality > 0.5)
than weights

https://fivethirtyeight.com/wp-content/uploads/2015/02/silver-feature-pareto-1.png?w=305
10

Lagrangian formulation
• Lagrangian formulation

• Typical solution:

•

• First solve the dual function to find Lagrangians, then plug Lagrangians to minimize

• Similar issue as the previous formulation: first clipping the constraints is not working

• Final approach:

• Method of multipliers: jointly optimize for both

•

• Increase the value of the multiplier with each gradient step as long as the constraint is violated (make the
optimization process take constraints more seriously)

11

Can select one of

“Pareto-optimal solutions”

12

Experiments
• Style transfer: make a given sentence more formal (give me that data —> please share the data)

• Task requirements:

• Attribute transfer: the transferred sentence should be formal

• Content preservation: the transferred sentence should not lose the original meaning

• Constraints, one per requirement:

• = 0.3

• Force to be greater than 0.5

• using a classifier

• Start with and slowly anneal

• Cosine similarity:

•

−log(pformal(y)) < − log(0.5)

pformal(y)

pformal(y) y

−log(pformal(y)) < 10

USIM(x, y)

−USIM(x, y) < − 0.15

13

Results

14

15

Introduction
• COLD decoding is a flexible framework that can be applied directly to off-the-

shelf left-to-right language models without the need for any task-specific fine-
tuning

• Setup:

• Given

• A language model

• A set of constraints specified as differentiable functions of output

• Generate samples that satisfy the constrain

16

Background
Energy distribution

• Energy-based distribution

•

• E(y) is the “energy function”

• Lower (more negative) energy states are more likely

• Terminology from physics, low-value energy states are preferable (second-law of
thermodynamics)

• E(y) can be arbitrary in principle

• We don’t care about the actual distribution typically, only the samples

p(y) =
exp−E(y)

∑y exp−E(y)

17

Encoding constraints in energy function
• Let be a constraint function, which is high if constraint is better satisfied

•

• E.g., number of tokens in that are one of {cat, dog, elephant}, more the better

• Desired:

• A way to draw samples from the energy function

• Langevin dynamics

• MCMC method, used for sampling from energy functions 

• Langevin dynamics is motivated and originally derived as a discretization of a stochastic differential equation whose equilibrium distribution is the posterior distribution

•

• : step size,

• Welling & Teh 2011 prove that

• Problem as usual:

•

• Differentiate w.r.t. concrete text

• Same solution as used by Kumar 2021 —> soft tokens

• Same constraint: the constrain functions need to be differentiable

fi(y)

p(y) =
exp∑i λi fi(y)

Z
y

yn+1 ← yn − η∇yE(yn) + ϵn

η ϵ ∼ 𝒩(0,σ)

lim
n→∞

yn ∼ p

∇yE(y)

https://www.stats.ox.ac.uk/~teh/research/compstats/WelTeh2011a.pdf 18

COLD decoding overview

19

From soft-tokens to hard tokens
• Top-k mask 
 
 
 
 

• Essentially, the language model gives an idea of what is right

•Questionable, and ablations reveal that this is critical for their method

20

Experiments
Abductive reasoning

• Given a beginning (: Tim wanted to learn astronomy) and end sentence (Tim
worked hard in school to become one), generate a bridge sentence that completes
the reasoning chain

• : Tim took admission in an astronomy program

• Constraints:

• The generated text should have a high-likelihood given the left and right sentences

• should predict

• There should be some common keywords between , ,

xl xr

ỹ

ỹ

ỹ xr

ỹ xl xr

21

Example of constraints

• Soft-fluency constraint:

• To be used in conjunction with other constraints

22

Experiments
Counterfactual story generation

• A number of other shortcuts to get it to work

• Hyper-parameters appear to be highly tuned (0.3, 0.2, 0.02, 0.48), but no details how

• The method only generates 10 tokens, and the rest are generated by standard language models

23

Discussion
• Summary

• There are methods that can generate samples from pre-trained language models that satisfy certain constraints, without re-training

• Difference between two works?

• Formulation and method, but conceptually identical

• COLD allows drawing multiple samples, but also possible with MuCOCO

• MuCOCO allows specifying different constraints on weights

• Non-differentiable objectives

• Uses continuous sampling from black box models, but extremely slow

24

Modeling dynamics of text using
stochastic processes

25

26

Introduction
• Long-form generation is important

• Story generation, document generation

• Current language models struggle

• Possible reason:

• Auto-regressive models struggle to attend to longer sequences

• No notion of “evolving” context

27

Overview
• Generate hidden states for each sentence of a long document 

• The representations should vary smoothly  

• The representations should be grounded in the start and beginning 

28

Brownian motion

29

Brownian motion

https://ocw.mit.edu/courses/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/3b97c6b0c282dd9dc024c4c7ffe3fba8_MIT18_S096F13_lecnote17.pdf

Distribution given by this theorem is brownian motion.

30

Brownian bridge
• We are given coarse points, and we want to “fill” the

path between them with Brownian motion

• key idea: learn latents that create a brownian motion
between two given points

No variance at the beginning or the end 
The point is “attached”

31

Method outline
• Contrastive learning:

• Three sentences from a “document” in a sequence with hidden representations

• A random sentence with embedding z’

x0, xt, xT z0, zt, zT

x′￼

32

Generating text

• Train a model to generate the sentences conditioned on the latent
embeddings

• During inference, generate text conditioned on these latent embeddings

33

Experiments
• Datasets

• Wikisection: wikipedia articles on cities split by section, each article has four
sections (abstract, history, geography, demographics)

• Taskmaster-2 (TM-2) (Byrne et al., 2019) contains conversations on finding
restaurants between an assistant and a user.

• TicketTalk (Byrne et al., 2021) contains conversations on booking movie
tickets between an assistant and a user. The assistant’s and user’s turns are
similarly marked as in TM-2.

• ROC Stories (Mostafazadeh et al., 2016) is a short 5-sentence stories
dataset. 

34

Results
• Can Time Control model local text dynamics?

• Encode two sentences using their method and the baselines

• Order is shuffled, and encodings are fed to a classifier

xt, xt+k

zt, zt+k

Their method

Brownian motion

Implicit dynamics

Classical methods

35

Results
Infilling

• Five-sentence stories:

• Generate

• Encode ,

x0, x1, x2, x3, x4

x2 ∣ x0, x1, x3, x4

z0 ← x0 | |x1 zT ← x3 | |x4

36

Potential next steps
• Aligning brownian processes across sequences

• Pinning down to more than three points?

37

Aman Madaan, Yiming Yang  
(WIP)

38

Graph generation
• Overview: learn a model for a (typically large) graph

pθ
Training

Inference
pθ

Initial nodes Reconstructed graph
39

Evaluating graph generation models
• Structural: how closely does G’ look like G?

◦ Max degree 

◦ Triangle count

◦ Clustering coefficient

◦ Can be gamed by a model that memorizes all the edges 

• Downstream task:

• Tests generalization 

◦ During training, entire G is not used and some edges are held out 

◦What % of those edges are generated in G’?

40

Autoregressive graph generation (our method)

N layer transformer
architecture with 

self-attention

Alternative interpretation:
matrix completion

41

Autoregressive graph generation
Results
• Outperforms existing baselines + Not sensitive to hyper-parameters tuning

42

2 * 2 = ?

43

19 * 3 = ?

44

Dual-process theory of mind
• Humans use different metaphorical parts of the brain to solve

problems of various difficulties:

• System 1: fast, instinctive, pattern-matcher, good for easy
problems

• System 2: slow, analytical, deep-thinker, good for hard problems

• Current machine learning models:

• Always use the same hammer for problems of all levels of
difficulty

• Practical implications:

• More efficient systems

• Critical in the age of large language models

45

FLOWGEN
Generating graphs fast and slow

• Our method relies on using random walks for reconstructing
the graph 

• A random walk begins from a fixed, given node

• Generating the 2nd point requires reasoning about 2-hops

• Generating the 3rd point requires

• Intuitively, the process gets more difficult with sequence

• Need assistance only when generating walks in the later part

v1

p(v2 ∣ v1)

p(v3 ∣ v2, v1)

46

FLOWGEN
Overview
• Train two models: fast (transformer with 1 layer) and slow (transformer with 6 layers)

• Start random walk generation with a fast model, switch to a slow model when the
walk is starting to feel lost

• Switch

• Easy because of auto-regressive setup: the walk generated so far is a prefix to the
slower model

• When the walk is starting to feel lost

• In general, known to be a challenging issue

• Relates to uncertainty estimation, model calibration
47

FLOWGEN
How do we know when the model is getting lost?
• Define to be a neighborhood of four consecutive nodes in the true graph, to be all the random walks of

length 4

• We want an estimate of

• For smaller graphs, can be enumerated and fed to a balanced-binary tree for efficient search (aka hashmap)

• Not an option for our case

• Graphs are large, exponential possible

• Can use distributed lookup caches, but if switch detection takes all the time, we will miss out on any gains by fast + slow
interplay

• Want a quick estimate of

• Noisy estimate is okay

• Bloom-filters are meant for exactly this use case

• Interpretation: random walks are brownian motion in the limit, we want to determine if a set of consecutive points was sampled
from the process defining brownian motion

N = [vi, vi+1, vi+2, vi+3] ℛ

P(N ∈ ℛ)

ℛ

ℛ

P(N ∈ ℛ)

48

Bloom filters
• Probabilistic data structures for efficiently answering set-membership queries

• Parameters:

• m bits

• k hash functions

• n elements to be inserted

• Tunable False positive rate:  ϵ ≈ (1 − e
−kn
m)k

https://freecontent.manning.com/wp-content/uploads/bloom-filters_02.png49

FLOWGEN
Detecting exploration
• Store a large fraction of neighborhoods in the training data in a bloom filter

• Approximately 1 bit per walk

• 130x less space to store the entire graph for doing search queries

• Random walk can be in “exploring” or “exploiting” phase:

• When a neighborhood is not found in , random walk is “exploring”, otherwise random walk is
exploiting

• Let be 1 if the neighborhood is likely to be exploratory

• rate of change of exploration with time

• Switch at

• Generate 10k walks from fast and slow model, detect when they switch by finding the rate of new
neighborhoods

ℬ

ℬ

EL(N)
dEL(N)

dt

t = argmaxt
dEL(N)

dt

50

51

Results
Same accuracy at 50% less time

52

Take home message

• Beyond vanilla seq2seq

• Gradient-based optimization

• Sampling from energy models

• Gradient-free sampling

• Generation as brownian process

• Fast-slow generation with bloom filters

• Next steps:

• Gradient based methods that actually work

• Fitting a brownian motion model to the random walk for determining the switch point more efficiently

53

