Beyond conventional text generation

Aman @ Yiming Yang Lab seminar, 4/5/2022

LM-based generation models

- Typically involve a transformer-based language model + large parallel corpus
- Established
 - Pre-train -> Fine-tune -> test
- Popular setups
 - Unsupervised
 - GANs
 - Few-shot
 - Retrieval-augmented
 - Plan-based
 - Structured-generation
 - VAE/De-noising objectives
 - Structure-guided generation *
 - Memory-guided generation *
- Today
 - Few things not on the list
 - Text generation as optimization (aka Gradient-based approaches)
 - Stochastic processes

Outline

- Part A:
 - Text generation as optimization
- Part B
 - Modeling dynamics of text using stochastic processes
- Part C
 - Fast-slow graph generation

Text generation as optimization

Text generation as optimization

- Given
 - A large pre-trained language model p_{θ}
 - A set of constraints, specified as functions $f_1, f_2, \dots, f_m, g_1, g_2, \dots, g_n$
 - $g: X \times Y \to R$
 - Constraints on inputs x and output y (e.g., semantic similarity)
 - $f: Y \to R$
 - Constraints on just the output (e.g., fluency)
 - Constraints <=> Desired attributes
- Generate
 - samples (text) from p_{θ} without re-training that satisfy the constraints
- Admits several popular controllable text generation problems:
 - Make text polite
 - Include certain words in the output
 - Condition output on certain keywords

Text generation as optimization: y as a parameter

- $\mathscr{L}(x, y) = f_1(y) + g_1(x, y) + p_{\theta}(y \mid x)$
- Given an initial y^0

•
$$y^{t+1} \leftarrow y^t - \eta \nabla_y(L)$$

- But y is discrete...
- Formality transfer:
 - Given y = "give me the data" generate "please share the data"
 - A formality constraint (e.g., $f_1(y)$ measures how polite the sentence y is)
 - What is $V_v L$??
 - is lower), but not differentiable

• The intuition is well-motivated (how to change "give me the data" so that loss

Recurring theme: y as a parameter

Instead, y_i is treated as a simplex ($0 \le y_{il} \le 1$, vocabulary size)

- In short, maintain a continuous representation of y so that it can be back propagated
- y a tensor like any other parameter, can be attached to the computation graph and backpropagated through
- Other solutions like Gumbel-softmax

Towards Decoding as Continuous Optimisation in Neural Machine Translation

Cong Duy Vu Hoang[†] and Gholamreza Haffari[‡] and Trevor Cohn[†]

† University of Melbourne [‡] Monash University Melbourne, VIC, Australia Clayton, VIC, Australia vhoang2@student.unimelb.edu.au, gholamreza.haffari@monash.edu, t.cohn@unimelb.edu.au **EMNLP 2017**

$$\sum_{l=1}^{|V|} y_{il} = 1, |V| \text{ is the}$$

Published as a conference paper at ICLR 2017

CATEGORICAL REPARAMETERIZATION WITH GUMBEL-SOFTMAX

Eric Jang **Google Brain** ejang@google.com

Shixiang Gu* University of Cambridge MPI Tübingen sg717@cam.ac.uk

Ben Poole* Stanford University poole@cs.stanford.edu

Controlled Text Generation as Continuous Optimization with Multiple Constraints

Sachin Kumar[♣] Eric Malmi[◊] Aliaksei Severyn[◊] Yulia Tsvetkov[♠]
 [♣]Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA
 [◊]Google Research
 [♠]Paul G. Allen School of Computer Science & Engineering, University of Washington sachink@cs.cmu.edu, {emalmi, severyn}@google.com, yuliats@cs.washington.edu

Neurips 2021

Formulation

- Decoding as an optimization problem:
 - The language model will give some distribution over the input $p_{\theta}(y \mid x)$
 - Improve samples drawn from $p_{\theta}(y \mid x)$ without changing θ

$$\mathbf{y}^* = \arg\min_{\mathbf{y}\in\mathcal{Y}}(-\log p(\mathbf{y}|\mathbf{x}), f_1(\mathbf{y}), \dots, f_u(\mathbf{y}), g_1(\mathbf{x}, \mathbf{y}), \dots, g_v(\mathbf{x}, \mathbf{y}))$$

- Initial attempt: Treat constraints and likelihood as a function of y, and perform gradient descent on y
- Optimization problem with constraints

$$-\alpha \log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^{u} \lambda_i f_i(\mathbf{y}) + \sum_{j=1}^{v} \mu_j g_j(\mathbf{x}, \mathbf{y}),$$

Issues with vanilla formulation

 $\arg\min -\alpha \log p(\mathbf{y}|\mathbf{x}) +$

- Who decides weights over the constraints? different constraints may have lacksquaredifferent scales, some might be objective
- Non-convex "Pareto-front", hard to achieve
- Reformulate again as a Lagrangian optimization problem:

$$\arg\min_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) \text{ subject to}$$
$$f_i(\mathbf{y}) \le \epsilon_i, i \in \{1, \cdots, u\}$$
$$g_j(\mathbf{x}, \mathbf{y}) \le \xi_j, j \in \{1, \cdots, v\}$$

Upper limits are easy to manually specify (e.g. probability of formality > 0.5) than weights

https://fivethirtyeight.com/wp-content/uploads/2015/02/silver-feature-pareto-1.png?w=305

+
$$\sum_{i=1}^{u} \lambda_i f_i(\mathbf{y})$$
 + $\sum_{j=1}^{v} \mu_j g_j(\mathbf{x}, \mathbf{y}),$

٢.

Lagrangian formulation

Lagrangian formulation

$$\mathcal{L}(y,\lambda_1,\ldots,\lambda_u,\mu_1,\ldots\mu_v) = -\log p(\mathbf{y}|\mathbf{x}) - \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) \text{ subject } \mathbf{y} = -\log p(\mathbf{y}|\mathbf{x}) - \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) \qquad \text{arg min}_{\mathbf{y}} - \log P(\mathbf{y}|\mathbf{x}) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^u \lambda_i (\epsilon_i - f_i(y)) - \sum_{j=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_{i=1}^v \mu_j (\xi_j - g_j(x,y)) = -\log p(\mathbf{y}|\mathbf{x}) + \sum_$$

- Typical solution:
 - $\operatorname{arg\,min}_{\mathbf{y}} \operatorname{max}_{\lambda_i > 0, \mu_i > 0} \mathcal{L}(\mathbf{y}, \lambda_i, \mu_i)$
 - First solve the dual function to find Lagrangians, then plug Lagrangians to minimize
 - Similar issue as the previous formulation: first clipping the constraints is not working
- Final approach:
 - Method of multipliers: jointly optimize for both
 - $\mathbf{y}^{(t)} = \mathbf{y}^{(t-1)} \eta_1 \nabla_{\mathbf{y}} \mathcal{L}, \lambda_i^t = \lambda_i^{t-1} + \eta_2 \nabla_{\lambda_i} \mathcal{L}, \mu_i^t = \mu_i^{t-1} + \eta_2 \nabla_{\mu_i} \mathcal{L}$
 - optimization process take constraints more seriously)

• Increase the value of the multiplier with each gradient step as long as the constraint is violated (make the

Algorithm 1: MUCOCO: detailed decoding algorithm

respective initial and final thresholds, threshold update schedule, step sizes η_1, η_2 ; **Result:** output sequence y For all $k \in \{1, \ldots, L\}$, initialize $\tilde{\mathbf{y}}_k^0$ uniformly over Δ_V ; given values; for $t = 1, \ldots, MAXSTEPS$ do // forward pass for all k, compute $\hat{y}_k = \text{one-hot}(\arg \max \tilde{y}_k)$ and compute the loss \mathcal{L} (using (5)); // backward pass for all k, i and j, compute $\nabla_{\tilde{y}_k}^{t-1} = \frac{\partial \mathcal{L}}{\partial \tilde{\mathbf{y}}_k}, \nabla_{\lambda}^t$ // Update the parameters update $\tilde{y}_{k}^{(t+1)} \propto \tilde{y}_{k}^{(t)} \exp(1 - \eta_1 \nabla_{\tilde{y}_k} \mathcal{L});$ update $\lambda_i^t = \max(0, \lambda_i^{t-1} + \eta_2 \nabla_{\lambda_i} \mathcal{L})$, and $\mu_i^t = \max(0, \mu_i^{t-1} + \eta_2 \nabla_{\mu_i} \mathcal{L})$; update ϵ_i^t, ξ_j^t following the threshold update schedule end

Can select one of "Pareto-optimal solutions"

Input: input sequence x, output length L, base model \mathcal{G} , attribute functions f_i and g_j and their

For all $i \in \{1, \ldots, u\}$ and $j \in \{1, \ldots, v\}$, initialize λ_i^0, μ_i^0 as 0 and the thresholds ϵ_i^0, ξ_j^0 with the

$$\lambda_i^{t-1} = \frac{\partial \mathcal{L}}{\partial \lambda_i}, \nabla_{\mu_j}^{t-1} = \frac{\partial \mathcal{L}}{\partial \mu_j};$$

return $\arg\min_t \{-\log p(\tilde{\mathbf{y}}^{(t)}|\mathbf{x}) : \forall i, f_i(\tilde{\mathbf{y}}^{(t)}) \le \epsilon_i, \forall j, g_j(\mathbf{x}, \tilde{\mathbf{y}}^{(t)}) \le \xi_i\};$

Experiments

- Style transfer: make a given sentence more formal (give me that data -> please share the data)
- Task requirements:
 - Attribute transfer: the transferred sentence should be formal
 - Content preservation: the transferred sentence should not lose the original meaning
- Constraints, one per requirement:
 - $-\log(p_{formal}(\mathbf{y})) < -\log(0.5) = 0.3$
 - Force $p_{formal}(\mathbf{y})$ to be greater than 0.5
 - $p_{formal}(\mathbf{y})$ using a classifier \mathbf{y}
 - Start with $-\log(p_{formal}(\mathbf{y})) < 10$ and slowly anneal
 - Cosine similarity: USIM(x, y) \bullet
 - -USIM(x, y) < -0.15

Results

				Content Preservation (w.r.t. input)		Content Preservation (w.r.t. ref)	
Method	Constraint	Fluency	Transfer	WSIM	USIM	WSIM	USIM
STRAP	None	91%	78%	0.69	0.77	0.72	0.80
FUDGE	FORMAL(y)	90%	85%	0.71	0.77	0.73	0.81
MuCoCO	FORMAL(y)	89%	93%	0.67	0.75	0.72	0.78
MuCoCO	USIM(x, y)	92%	85%	0.71	0.78	0.74	0.81
MuCoCO MuCoCO	USIM (x, y) , WMD (x, y) SIM (x, y) , WMD (x, y) , FORMAL (y)	92% 93%	87% 92%	0.73 0.71	0.79 0.79	0.77 0.75	0.86 0.84

Table 1: Automatic evaluation of fluency, formality transfer, and content preservation for informal-toformal style transfer models.

COLD Decoding: Energy-based Constrained Text Generation with Langevin Dynamics

Lianhui Qin¹ Sean Welleck¹² Daniel Khashabi² Yejin Choi¹² ¹Paul G. Allen School of Computer Science & Engineering, University of Washington ²Allen Institute for Artificial Intelligence

Introduction

- tuning
- Setup:
 - Given
 - A language model
 - Generate samples that satisfy the constrain

• COLD decoding is a flexible framework that can be applied directly to off-theshelf left-to-right language models without the need for any task-specific fine-

A set of constraints specified as differentiable functions of output

Background **Energy distribution**

Energy-based distribution

•
$$p(y) = \frac{\exp^{-E(y)}}{\sum_{y} \exp^{-E(y)}}$$

- E(y) is the "energy function"
 - Lower (more negative) energy states are more likely
 - thermodynamics)
- E(y) can be arbitrary in principle
- We don't care about the actual distribution typically, only the samples

• Terminology from physics, low-value energy states are preferable (second-law of

Encoding constraints in energy function

• Let $f_i(y)$ be a constraint function, which is high if constraint is better satisfied

$$p(y) = \frac{\exp\sum_{i} \lambda_{i} f_{i}(y)}{Z}$$

- E.g., number of tokens in y that are one of {cat, dog, elephant}, more the better
- Desired:
 - A way to draw samples from the energy function
- Langevin dynamics
 - MCMC method, used for sampling from energy functions

•
$$y^{n+1} \leftarrow y^n - \eta \nabla_y E(y^n) + \epsilon^n$$

- η : step size, $\epsilon \sim \mathcal{N}(0,\sigma)$
- Welling & Teh 2011 prove that $\lim y^n \sim p$
- Problem as usual:
 - $\nabla_{\mathbf{y}} E(\mathbf{y})$
 - Differentiate w.r.t. concrete text
 - Same solution as used by Kumar 2021 —> soft tokens
 - Same constraint: the constrain functions need to be differentiable

• Langevin dynamics is motivated and originally derived as a discretization of a stochastic differential equation whose equilibrium distribution is the posterior distribution

COLD decoding overview

Initialization. We initialize the soft sequence $\tilde{\mathbf{y}}$ by running greedy decoding with the LM p_{LM} to obtain output logits. In our preliminary experiments, the initialization strategy had limited influence on the generation results.

Algorithm 1 Constrained Decoding w/ Langevin Dynamics.

input Constraints $\{f_i\}$, length T, iterations N. output Sample sequence y.

 $\tilde{\mathbf{y}}_t^{(0)} \leftarrow \text{init}() \text{ for all position } t // \text{ init soft-tokens}$ for $n \in \{1, ..., N\}$ do

$$\begin{split} & E^{(n)} \leftarrow E(\tilde{\mathbf{y}}^{(n)}; \{f_i\}) \quad \textit{// compute energy (§3.2)} \\ & \tilde{\mathbf{y}}_t^{(n+1)} \leftarrow \tilde{\mathbf{y}}_t^{(n)} - \eta \nabla_{\tilde{\mathbf{y}}_t} E^{(n)} + \epsilon_t^{(n)} \text{ for all } t \quad \textit{// update} \end{split}$$
soft tokens (Eq.2)

end for

 $y_t = \arg \max_v \operatorname{topk-filter} \left(\tilde{\mathbf{y}}_t^{(N)}(v) \right)$ for all t //discretize (Eq.6) **return:** $y = (y_1, ..., y_T)$

From soft-tokens to hard tokens

Top-k mask

 $y_t = \arg\max_{v \in \mathcal{V}_t^k} \tilde{\mathbf{y}}_t(v).$

Essentially, the language model gives an idea of what is right

Questionable, and ablations reveal that this is critical for their method

Experiments **Abductive reasoning**

- the reasoning chain
 - \tilde{y} : Tim took admission in an astronomy program
- Constraints:

 - \tilde{y} should predict x_r
 - There should be some common keywords between \tilde{y} , x_l , x_r

• Given a beginning $(x_l: Tim wanted to learn astronomy)$ and end sentence (x_rTim) worked hard in school to become one), generate a bridge sentence that completes

• The generated text \tilde{y} should have a high-likelihood given the left and right sentences

Example of constraints

- Soft-fluency constraint: $f_{\rm LM}^{\rightarrow}(\tilde{\mathbf{y}}) = \sum \sum$ t=1 v
 - To be used in conjunction with other constraints

$$\sum_{\boldsymbol{\in}\mathcal{V}} p_{\mathrm{LM}}^{\rightarrow}(\boldsymbol{v}|\tilde{\mathbf{y}}_{< t}) \log \operatorname{softmax}\left(\tilde{\mathbf{y}}_{t}(\boldsymbol{v})\right)$$

Experiments **Counterfactual story generation**

$$E(\tilde{\mathbf{y}}) = \lambda_a^{lr} f_{\text{LM}}^{\rightarrow}(\tilde{\mathbf{y}}; \mathbf{x}_l) + \lambda_a^{rl} f_{\text{LM}}^{\leftarrow}(\tilde{\mathbf{y}}; \mathbf{x}_r) + \lambda_b f_{\text{pred}}(\tilde{\mathbf{y}}; \mathbf{x}_r) + \lambda_c f_{\text{sim}}(\tilde{\mathbf{y}}; \text{kw}(\mathbf{x}_r) - \text{kw}(\mathbf{x}_l)).$$

na na seconda de la composición de la composic		Automa	tic Eval		Human Eval				
Models	BLEU ₄	ROUGE-L	CIDEr	BERTScore	Grammar	Left-coherence $(\mathbf{x}_l \mathbf{y})$	Right-coherence $(\mathbf{y}\mathbf{x}_r)$	Overall-coherence $(\mathbf{x}_l \mathbf{y} \mathbf{x}_r)$	
Left-only	0.88	16.26	3.49	38.48	4.57	3.95	2.68	2.70	
DELOREAN	1.60	19.06	7.88	41.74	4.30	4.23	2.83	2.87	
COLD (ours)	1.79	19.50	10.68	42.67	4.44	4.00	3.06	2.96	

- A number of other shortcuts to get it to work
 - Hyper-parameters appear to be highly tuned (0.3, 0.2, 0.02, 0.48), but no details how ●

• The method only generates 10 tokens, and the rest are generated by standard language models

Discussion

Summary \bullet

- **Difference between two works?** \bullet
 - Formulation and method, but conceptually identical
 - COLD allows drawing multiple samples, but also possible with MuCOCO
 - MuCOCO allows specifying different constraints on weights

Non-differentiable objectives

• Uses continuous sampling from black box models, but extremely slow

Mix and Match: Learning-free Controllable Text Generation using Energy Language Models

Fatemehsadat Mireshghallah¹, Kartik Goyal², Taylor Berg-Kirkpatrick¹ University of California San Diego, ² Toyota Technological Institute at Chicago (TTIC) [fatemeh, tberg]@ucsd.edu, kartikgo@ttic.edu

• There are methods that can generate samples from pre-trained language models that satisfy certain constraints, without re-training

Modeling dynamics of text using stochastic processes

Published as a conference paper at ICLR 2022

LANGUAGE MODELING VIA STOCHASTIC PROCESSES

Rose E. Wang, Esin Durmus, Noah Goodman, Tatsunori B. Hashimoto Stanford University {rewang, edurmus, ngoodman, thas him}@stanford.edu

Introduction

- Long-form generation is important
 - Story generation, document generation
- Current language models struggle
- Possible reason:
 - Auto-regressive models struggle to attend to longer sequences
 - No notion of "evolving" context

Overview

- Generate hidden states for each sentence of a long document
 - The representations should vary *smoothly*
 - The representations should be *grounded* in the start and beginning

Brownian motion

Brownian motion

Theorem 2.1. There exists a probability distribution over the set of continuous functions $B : \mathbb{R} \to \mathbb{R}$ satisfying the following conditions: (i) B(0) = 0.

(ii) (stationary) for all $0 \le s < t$, the distribution of B(t) - B(s) is the normal distribution with mean 0 and variance t - s, and (iii) (independent increment) the random variables $B(t_i) - B(s_i)$ are mutually independent if the intervals $[s_i, t_i]$ are nonoverlapping.

Distribution given by this theorem is brownian motion.

https://ocw.mit.edu/courses/18-s096-topics-in-mathematics-with-applications-in-finance-fall-2013/3b97c6b0c282dd9dc024c4c7ffe3fba8_MIT18_S096F13_lecnote17.pdf

Brownian bridge

• We are given coarse points, and we want to "fill" the path between them with Brownian motion

 key idea: learn latents that create a brownian motion between two given points

$$p(z_t|z_0, z_T) = \mathcal{N}\left(\left(1 - \frac{t}{T}\right)z_0 + \frac{t}{T}z_T, \frac{t(T-t)}{T}\right).$$

No variance at the beginning or the end The point is "attached"

Method outline

- Contrastive learning:
 - Three sentences x_0, x_t, x_T from a "document" in a sequence with hidden representations z_0, z_t, z_T
 - A random sentence x' with embedding z' ullet


```
x 0: [USER] Hello, I'd like to buy tickets for tomorrow.
x_t: [ASSISTANT] What movie theater do you prefer?
x_T: [USER] Could you confirm my tickets just in case?
```

x': [USER] Hi, I'm looking to purchase tickets for my family.

$$\exp(\mathtt{d}(z_t,\mu_t)) \ \exp(\mathtt{d}(z_t,\mu_t)) + \exp(\mathtt{d}(z',\mu_t))$$

$$\frac{(x_0, x_t, x_T; f_{\theta}))}{\exp(\mathsf{d}(x_0, x_{t'}, x_T; f_{\theta}))} \bigg], \text{ where}$$

Generating text

 Train a model to generate the sentences conditioned on the latent embeddings

 \bullet

During inference, generate text conditioned on these latent embeddings

Experiments

- Datasets
 - Wikisection: wikipedia articles on cities split by section, each article has four sections (abstract, history, geography, demographics)
 - Taskmaster-2 (TM-2) (Byrne et al., 2019) contains conversations on finding restaurants between an assistant and a user.
 - TicketTalk (Byrne et al., 2021) contains conversations on booking movie tickets between an assistant and a user. The assistant's and user's turns are similarly marked as in TM-2.
 - ROC Stories (Mostafazadeh et al., 2016) is a short 5-sentence stories dataset.

Results

- Can Time Control model local text dynamics?
- Encode two sentences x_t, x_{t+k} using their method and the baselines
- Order is shuffled, and encodings z_t, z_{t+k} are fed to a classifier

		Wikised	ction	TM	1-2	Ticke	tTalk
	Method	k = 5	k = 10	k = 5	k = 10	k = 5	k = 10
	GPT2	50.3 ± 5.8	50.2 ± 6.3	55.7 ± 5.3	63.6 ± 7.3	54.7 ± 6.1	65.0 ± 8.1
Classical methods	BERT	50.9 ± 4.9	47.8 ± 9.0	68.8 ± 3.5	80.7 ± 3.8	68.4 ± 5.1	80.4 ± 6.3
	ALBERT	49.9 ± 12.1	49.6 ± 18.0	81.6 ± 4.0	86.1 ± 7.3	78.4 ± 6.7	89.4 ± 3.1
	S-BERT	50.8 ± 6.0	48.0 ± 9.1	73.4 ± 3.5	83.3 ± 4.3	72.1 ± 5.3	84.2 ± 5.2
	Sim-CSE	49.1 ± 6.4	48.1 ± 8.5	75.4 ± 3.8	86.2 ± 3.9	75.1 ± 5.9	85.2 ± 3.1
	VAE (8)	49.5 ± 5.5	50.5 ± 5.1	50.5 ± 4.4	51.5 ± 6.0	49.9 ± 1.0	51.2 ± 1.0
	VAE (16)	50.1 ± 5.8	51.3 ± 4.7	48.8 ± 4.8	50.8 ± 4.9	50.1 ± 1.0	49.5 ± 1.0
	VAE (32)	50.5 ± 5.1	50.0 ± 6.0	48.0 ± 5.1	47.3 ± 5.9	50.0 ± 1.0	49.3 ± 1.0
	ID (8)	49.8 ± 5.9	50.1 ± 5.0	60.3 ± 5.2	65.2 ± 6.8	59.2 ± 1.9	66.5 ± 1.1
Implicit dynamics	ID (16)	53.3 ± 5.4	55.8 ± 6.2	60.5 ± 5.0	67.7 ± 6.8	60.3 ± 1.0	68.4 ± 6.4
	ID (32)	50.0 ± 5.0	50.1 ± 5.0	60.4 ± 5.3	67.6 ± 7.1	61.0 ± 1.0	67.9 ± 6.5
1(1, 1, 1) $1 + f(1, 1) + f(1, 1) + 2$	BM (8)	49.8 ± 5.4	50.0 ± 5.4	49.8 ± 5.4	49.9 ± 5.2	49.7 ± 5.0	50.6 ± 5.8
$\mathbf{d}(x_t, x_{t'}; f_{\theta}) = -\frac{1}{2\sigma^2} \ \underbrace{f_{\theta}(x_{t'})}_{f_{\theta}(x_{t'})} - \underbrace{f_{\theta}(x_t)}_{f_{\theta}(x_t)}\ _2^2 \qquad \text{Brownian motion}$	BM (16)	50.3 ± 5.5	50.5 ± 5.2	49.9 ± 4.3	51.1 ± 6.0	50.3 ± 4.6	50.8 ± 5.5
z_t , z_t	BM (32)	49.3 ± 5.6	48.8 ± 5.8	49.5 ± 4.7	49.6 ± 5.2	49.5 ± 5.6	49.1 ± 6.1
	TC (8)	49.23 ± 5.72	48.3 ± 6.8	77.6 ± 7.8	87.7 ± 6.9	71.6 ± 2.9	82.9 ± 4.1
$d(x_0, x_t, x_T; f_{\theta}) = -\frac{1}{2\pi^2} \left\ f_{\theta}(x_t) - \left(1 - \frac{t}{T}\right) f_{\theta}(x_0) - \frac{t}{T} f_{\theta}(x_T) \right\ ^2$ Their method	TC (16)	57.25 ± 5.30	65.8 ± 5.4	78.2 ± 8.1	88.0 ± 7.1	71.3 ± 3.3	82.9 ± 4.1
$2\sigma^2 \parallel \underbrace{(1)}_{z_t} \underbrace{(1)}_{z_t} \parallel_2$	TC (32)	50.1 ± 4.8	49.8 ± 5.8	77.9 ± 7.9	87.9 ± 7.4	72.0 ± 3.9	84.4 ± 3.9

Results Infilling

- Five-sentence stories: x_0, x_1, x_2, x_3, x_4
- Generate $x_2 \mid x_0, x_1, x_3, x_4$
- Encode $z_0 \leftarrow x_0 | | x_1, z_T \leftarrow x_3 | | x_4$

Method	BLEU (
LM ILM	$1.54 \pm 0 \\ 3.03 \pm 0$
VAE (8) VAE (16) VAE (32)	$\begin{array}{c} 0.75 \pm 0 \\ 0.62 \pm 0 \\ 0.03 \pm 0 \end{array}$
ID (8) ID (16) ID(32)	$\begin{array}{c} 2.9 \pm 0 \\ 0.9 \pm 0 \\ 1.0 \pm 0 \end{array}$
TC (8) TC (16) TC (32)	3.80 ± 0 4.30 ± 0 5.4 ± 0 .

Table 2: BLEU on ground truth infill and generated sentence.

Potential next steps

- Aligning brownian processes across sequences
- Pinning down to more than three points?

FLOWGEN: Fast and slow graph generation

Aman Madaan, Yiming Yang (WIP)

Graph generation

• Overview: learn a model for a (typically large) graph

Initial nodes

Training

Reconstructed graph

Evaluating graph generation models

- Structural: how closely does G' look like G? • Max degree
 - Triangle count
 - Clustering coefficient
 - Can be gamed by a model that memorizes all the edges
- Downstream task:
 - Tests generalization
 - During training, entire **G** is not used and some edges are held out
 - What % of those edges are generated in **G**?

Autoregressive graph generation (our method)

Autoregressive graph generation **Results**

CORAML	CITESEER	POLBLOGS
2.16	88.69	85.43
6.03	94.77	95.46
2.19	95.29	85.10
5.79	95.11	93.73
5.19	96.30	95.51
6.93	97.03	95.00
	CORAML 2.16 6.03 2.19 5.79 5.19 6.93	CORAML CITESEER 2.16 88.69 6.03 94.77 2.19 95.29 5.79 95.11 5.19 96.30 6.93 97.03

Table 3: Area under the curve (AUC) for link prediction. FLOWGEN outperforms or matches strong baselines.

	N_{LCC}	E_{LCC}
CORAML	2,810	7,981
CITESEER	2,110	3,757
POLBLOGS	1,222	16,714

Outperforms existing baselines + Not sensitive to hyper-parameters tuning

Graph	Max.	Assort-	Triangle	Power	Inter-comm	Intra-comm.	Cluster-	Cl
	degree	ativity	Count	law exp.	unity density	unity denisty	ing coeff.	pa
CORA-ML	240	-0.075	2,814	1.860	4.3e-4	1.7e-3	2.73e-3	5.
Netgan	233	-0.066	1,588	1.793	6.0e-4	1.4e-3	2.44e-3	5.2
FLOWGEN (ours)	224	-0.080	2,123	1.857	5.4e-4	1.3e-3	2.50e-3	5.4

Table 2: Comparison of FLOWGEN with Netgan for structural metrics for CORAML. The ground truth values are listed in the top-row, and the value closer to the ground truth is highlighted in bold. FLOWGEN closely matches the ground truth graph on a larger number of metrics.

Dual-process theory of mind

- Humans use different metaphorical parts of the brain to solve problems of various difficulties:
 - System 1: *fast*, instinctive, pattern-matcher, good for easy problems
 - System 2: *slow*, analytical, deep-thinker, good for hard problems
- Current machine learning models:
 - Always use the same hammer for problems of all levels of difficulty
- Practical implications:
 - More efficient systems
 - Critical in the age of large language models

FLOWGEN Generating graphs fast and slow

- Our method relies on using random walks for reconstructing the graph
- A random walk begins from a fixed, given node v_1
 - Generating the 2nd point requires reasoning about 2-hops $p(v_2 \mid v_1)$
 - Generating the 3rd point requires p(
 - Intuitively, the process gets more difficult with sequence
- Need assistance only when generating walks in the later part

$$(v_3 | v_2, v_1)$$

FLOWGEN **Overview**

- walk is starting to feel lost
- Switch
 - slower model
- When the walk is starting to feel lost
 - In general, known to be a challenging issue
 - Relates to uncertainty estimation, model calibration

• Train two models: *fast* (transformer with 1 layer) and *slow* (transformer with 6 layers) Start random walk generation with a *fast* model, *switch* to a slow model when the

• Easy because of auto-regressive setup: the walk generated so far is a prefix to the

How Can We Know When Language Models Know? On the Calibration of Language Models for Question Answering

Zhengbao Jiang[†], Jun Araki[‡], Haibo Ding[‡], Graham Neubig[†] [†]Languages Technologies Institute, Carnegie Mellon University, United States [‡]Bosch Research, United States {zhengbaj,gneubig}@cs.cmu.edu {jun.araki,haibo.ding}@us.bosch.com

FLOWGEN

How do we know when the model is getting lost?

- Define $N = [v_i, v_{i+1}, v_{i+2}, v_{i+3}]$ to be a neighborhood of four consecutive nodes in the true graph, \mathscr{R} to be all the random walks of length 4
- We want an estimate of $P(N \in \mathcal{R})$

 - Not an option for our case
 - Graphs are large, exponential possible \mathscr{R}
 - interplay
- Want a quick estimate of $P(N \in \mathcal{R})$
 - Noisy estimate is okay
 - **Bloom-filters** are meant for exactly this use case
- from the process defining brownian motion

• For smaller graphs, \mathscr{R} can be enumerated and fed to a balanced-binary tree for efficient search (aka hashmap)

• Can use distributed lookup caches, but if switch detection takes all the time, we will miss out on any gains by fast + slow

• Interpretation: random walks are brownian motion in the limit, we want to determine if a set of consecutive points was sampled

Bloom filters

- Probabilistic data structures for efficiently answering set-membership queries
- Parameters:
 - m bits
 - k hash functions
 - n elements to be inserted
- Tunable False positive rate: $\epsilon \approx (1 e^{\frac{-kn}{m}})^k$

FLOWGEN **Detecting exploration**

- Store a large fraction of neighborhoods in the training data in a bloom filter \mathscr{B}
- Approximately 1 bit per walk
 - 130x less space to store the entire graph for doing search queries
- Random walk can be in "exploring" or "exploiting" phase:
 - When a neighborhood is not found in \mathscr{B} , random walk is "exploring", otherwise random walk is exploiting
 - Let EL(N) be 1 if the neighborhood is likely to be exploratory dEL(N)
 - rate of change of exploration with time

• Switch at
$$t = argmax_t \frac{dEL(N)}{dt}$$

• Generate 10k walks from fast and slow model, detect when they switch by finding the rate of new neighborhoods

Inference

Results

Same accuracy at 50% less time

	FAST	SLOW	FLOWGEN
CORAML (500k)	76.8 (288)	92.2 (806)	90.8 (484)
CORAML (100M)	91.5 (50k)	96.7 (180k)	96.9 (110k)
CITESEER (500k)	90.9 (313)	94.6 (862)	93.3 (687)
CITESEER (100M)	96.1 (62k)	96.8 (172k)	96.5 (137k)
POLBLOGS (500k)	61.9 (309)	85.4 (854)	86.5 (686)
POLBLOGS (100M)	66.2 (48k)	93.8 (156k)	93.8 (108k)

Figure 4: Average precision vs. time taken for the three settings. The FAST and SLOW model speedaccuracy trade-off is apparent: FAST model is fast but less accurate (average precision $\sim 75\%$, compared to the SLOW model which is slower but has average precision of 92%. FLOW combines the strengths of the two modes: it achieves an accuracy of 90% while being $\sim 50\%$ faster than the SLOW model. Note that the time is normalized relative to SLOW (SLOW takes 100% of the time).

Take home message

- Beyond vanilla seq2seq
 - Gradient-based optimization
 - Sampling from energy models
 - Gradient-free sampling
 - Generation as brownian process
 - Fast-slow generation with bloom filters
- Next steps:
 - Gradient based methods that actually work

• Fitting a brownian motion model to the random walk for determining the switch point more efficiently

