Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango

Aman Madaan* and Amir Yazdanbakhsh*
Carnegie Mellon University ${ }^{\bullet}$ Google Research, Brain Team Paper amadaan@cs.cmu.edu, ayazdan@google.com

Background

Solving middle-school math problems

Q: Shawn has 5 toys. For Christmas, he got 2 toys each from his mom and dad. How many toys does he have now?

Fine-tuning

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Q: Leah had 32 chocolates and her sister had 42. If they ate 35 , how many pieces do they have left in total?

A: The answer is 5 cars.

Train/Fine-tune

```
Q: Shawn has five toys. For Christmas, he
got two toys each from his mom and dad. How
many toys does he have now?
```


A: The answer is 9 toys
Test

Few-shot prompting (in-context learning/autocomplete)

```
Q: If there are 3 cars in the parking lot and 2 more
cars arrive, how many cars are in the parking lot?
A: The answer is 5 cars.
Q: Leah had 32 chocolates and her sister had 42. If
they ate 35, how many pieces do they have left in
total?
A: The answer is 39 pieces.
Q: Shawn has five toys. For Christmas, he got two
toys each from his mom and dad. How many toys does
he have now?
A:
```


The answer is 9 toys

Design of prompt

(prompt engineering) is critical

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten

Chain of thought prompting

 Bosma, Ed Chi, Quoc Le, and Denny Zhou. "Chain of thought prompting elicits reasoning in large language models." arXiv preprint arXiv:2201.11903 (2022).```
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars
are in the parking lot?
Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
A: The answer is 5 cars.
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many
pieces do they have left in total?
Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total
they had _32 + 42 = 74. After eating 35, they had 74 -- 35 = 39.
A: The answer is 39 pieces.
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and
dad. How many toys does he have now?
T:
```


## Chain of thought prompting is extremely effective



## How PaLM-SayCan <br> Works

Large Language Models are Zero-Shot Reasoners


This demo shows a PaLM-enabled helper robot performing
a series of complex tasks using chain of thought prompting and the step-by-step solution needed to carry out the requests.

https://say-can.github.io/

Google Research

Least-to-Most Prompting Enables Complex Reasoning in Large Language Models

Google Research

## Self-Consistency Improves Chain of Thought Reasoning in Language Models

Xuezhi Wang ${ }^{\dagger \ddagger}$, Jason Wei ${ }^{\dagger}$, Dale Schuurmans ${ }^{\dagger}$, Quoc Le ${ }^{\dagger}$, Ed H. Chi ${ }^{\dagger}$, Sharan Narang ${ }^{\dagger}$, Aakanksha Chowdhery ${ }^{\dagger}$, Denny Zhou ${ }^{\dagger}$
Google Research, Brain Team
${ }^{\ddagger}$ xuezhiw@google.com, ${ }^{\S}$ dennyzhou@google.com

## What makes chain of thought prompting so effective?

## What makes the chain of thought prompting so effective?

- The thought makes the model think about the problem?
- The thought helps the model learn better
- The thought serves as an additional example of the task
- The thought helps the model remind of the task
- The thought helps extract relevant information for solving the task


## What makes chain of thought prompting so effective

Text: Extracting common sense, copy mechanism


Patterns: Task understanding, final answer generation

## Approach

```
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many
cars are in the parking lot?
```

T: There are originally 3 cars. 2 more cars arrive. $3+2=5$.

A: The answer is 5 cars.
Symbols

- Counterfactual prompting:
- Change one knob at a time (symbol, patterns, text)



## What if? prompting (counterfactual prompting)

Q: If there are 3 cars in
the parking lot and 2 more
cars arrive, how many cars
are in the parking lot?
Thought ( $T$ ): There are
originally 3 cars. 2 more
cars arrive. $3+2=5$.
A: The answer is 5 cars.
 is misleading?

Q: If there are $\alpha$ cars in the parking lot and $\beta$ more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally $\alpha$ cars. $\beta$ more cars arrive. $\alpha+\beta=\lambda$.

A: The answer is $\lambda$ cars.

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars.
2 more cars arrive. $3+2=7$.

A: The answer is 5 cars.

## Evaluating counterfactual prompts



Empirical results: difference in final outcome

Attention patterns: difference in mechanism

## Experimental Setup

## Setup

- Models: PaLM-62B, PaLM-540B, CODEX, GPT-3
- Run each experiment with three seeds, report average etc.
- Results here are for PaLM-62B


## Tasks

## 4 Mathematical

$\Leftrightarrow \mathbf{Q} \mapsto$ Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
$\bullet \mathcal{T} \mapsto$ Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 $+4=9$.
$-\mathcal{A} \mapsto$ The answer is 9 .

## 4 COMMONSENSE (SPORTS)

$\Leftrightarrow \mathbf{Q} \mapsto$ Is the following sentence plausible? "Jamal Murray was perfect from the line."
$\bullet \mathcal{T} \mapsto$ Jamal Murray is a basketball player. Being perfect from the line is part of basketball.
$-\mathcal{A} \mapsto$ The answer is yes.
< Commonsense - (Date)
$\boldsymbol{\mathcal { Q }} \mapsto$ It is 4/19/1969 today. What is the date 24 hours later in MM/DD/YYYY?
$\bullet \mathcal{T} \mapsto$ Today is 04/19/1969. 24 hours later is one day after today, which would be 04/20/1969.

- $\mathcal{A} \mapsto$ The answer is 04/20/1969.
-SYMBOLIC - (Sorting)
$\Rightarrow \mathbf{Q} \mapsto 2,4,3,8,9,6,7,1$.
$\rightarrow \mathcal{T} \mapsto 1<2<3<4<5<6<7<8<9$.
$\bullet \mathcal{A} \mapsto$ The answer is $1,2,3,4,5,6,7,8,9$


## Symbols，Patterns，Text

¢ MATHEMATICAL
Question：Shawn has five toys．For Christmas，he got two toys each from his mom and dad．How many toys does he have now？
Thought：Shawn started with $\mathbf{5}$ toys．If he got $\mathbf{2}$ toys each from his mom and dad，then that is $\mathbf{4}$ more toys $5+4=9$
Question：Jason had 20 lollipops．He gave Denny some lollipops．Now Jason has 12 lollipops．How many lollipops did Jason give to Denny？
Thought：Jason started with 20 lollipops．Then he had 12 after giving some to Denny．So he gave Denny $20-12=8$

## －COMMONSENSE（SPORTS）

Question：Is the following sentence plausible？＂Jamal Murray was perfect from the line．＂
Thought：Jamal Murray is a basketball player．Being perfect from the line is part of basketball
Question：Is the following sentence plausible？＂Joao Moutinho caught the screen pass in the NFC champi－ onship．＂
Thought：Joao Moutinho is a soccer player．The NFC championship is part of American football，not soccer．

## －COMMONSENSE（DATE）

Question：It is $\mathbf{4 / 1 9 / 1 9 6 9}$ today．What is the date 24 hours later in MM／DD／YYYY？
Thought：＜calculation〉Today is $\mathbf{0 4 / 1 9 / 1 9 6 9}$ ． 24 hours later is one day after today，which would be $\mathbf{0 4 / 2 0 / 1 9 6 9}$ ．＜output〉 The answer is $\mathbf{0 4 / 2 0 / 1 9 6 9}$ ．
Question：The concert was scheduled to be on $\mathbf{0 6} / \mathbf{0 1} / \mathbf{1 9 4 3}$ ，but was delayed by one day to today．What is the date 10 days ago in MM／DD／YYYY？
Thought：＜calculation $\rangle$ One day after $06 / 01 / 1943$ is $\mathbf{0 6 / 0 2 / 1 9 4 3}$ ，so today is $\mathbf{0 6 / 0 2 / 1 9 4 3}$ ．＜output〉 10 days before today is $05 / 23 / 1943$ ．

| $\boldsymbol{\operatorname { S Y m }} \mathrm{SYLIC}($ SORTING $)$ |
| :--- |
| Question： $3,1,2,7,8,5,6,9,4$ |
| Thought： $1<2 \ldots<9$ |

Thought： $1<2 \ldots<9$

Part 1: Symbols

## What if we replace all the numbers with greek alphaßets?

## Abstract symbols

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. $3+2=5$.

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had $32+42=74$. After eating 35 , they had $74-35=39$.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
$T:$

Q: If there are $\alpha$ cars in the parking lot and $\beta$ more cars arrive, how many cars are in the parking lot?

T: There are originally $\alpha$ cars. $\beta$ more cars arrive. $\alpha+$ $\beta=\lambda$.,

A: The answer is $\lambda$ cars.

Q: Leah had $\alpha$ chocolates and her sister had $\beta$. If they ate $\lambda$, how many pieces do they have left in total?
T: Originally, Leah had $\alpha$ chocolates. Her sister had $\beta$.
So in total they had $\alpha+\beta=\pi$. After eating $\lambda$, they had $\pi-\lambda=\mu$.

A: The answer is $\mu$ pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
$T:$

The test questions are not changed.

## Abstract symbols results (outcome)



## Abstract symbols results (mechanism)

Q : There are 5 trees the grove. Grove workers will plant trees in grove today. After they are done, there will be 21 trees. How many trees did the grove workers plant today? A : There are 5 trees originally. Then there were 21 trees after more were planted. So there must have been $2-5=$. The answer is 6 . Q : If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? A : There are originally 3 cars. 2 more cars arrive . $3+$ $2=5$. The answer is $5 . \mathrm{Q}:$ Leah had 32 chocolates and her sister had 42 . If they at e 3 , how many pieces do they have left total? A: Originally, Leah had 32 chocolates. Her sister had 42 . So total they had $32+42=74$. After eating 35 they had $4-35=39$. The answer is 39 . Q : Jason had 20 lollipops . He gave Denny some lollipops . Now Jason has 12 lollipops. How many lollipops did Jason give to Denny ? A : Jason started with 2 lollipops . Then he had 2 after giving some to Denny. So he gave Denny 2 0-1 $2=8$. The answer is 8 . Q : Shawn has five toys. For Christmas he got two toys each from his mom and dad. How many toys does he have now ? A : Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys $.5+4=9$. The answer is 9 . $Q$ : There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room ? A : There were originally 9 computers. For each of 4 days, 5 more computers were added. So $5^{*} 4=20$ computers were added. $9+20$ is 29 . The answer is 29 . Q : Michael had 58 golf balls . On tuesday, he lost 23 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday? A : Michael started with 58 golf balls. After losing 23 on tuesday, he had 58-23=35. After losing 2 more, he had 35-2=33 golf balls. The answer is 33 . Q: Olivia has $\$ 23$. She bought five bagels for $\$ 3$ each. How much money does she have left ? A : Olivia had 23 dollars. 5 bagels for 3 dollars each will be $5 \times 3=15$ dollars . So she has 23-15 dollars left. 23-15 is 8 . The answer is 8 .

## Identical <br> mechanism!

Q : There are $\alpha$ trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be $\beta$ one trees. How many trees did the grove workers plant today? A: There are $\alpha$ trees originally. Then there were $\beta$ one trees after some more were planted. So there must have been $\beta$ one $-\alpha=\lambda$. The answer is $\lambda$. Q : If there are $\alpha$ cars in the parking lot and $\beta$ more cars arrive, how many cars are the parking lot ? A : There are originally $\alpha$ cars . $\beta$ more cars arrive. $\alpha+\beta=\lambda$. The answer is $\lambda$. $Q$ : Leah had $\alpha$ chocolates and her sister had $\beta$. If they at $e \lambda$, how many pieces do they have left in total ? A : Originally, Leah had $\alpha$ chocolates. Her sister had $\beta$. So in total they had $\alpha+\beta=\Pi$ . After eating $\lambda$, they had $п-\lambda=\mu$. The answer is $\mu$. Q : Jason had $\alpha$ lollipops. He gave Denny some. Now Jason has $\beta$ lollipops. How many lollipops did Jason give to Denny? A Jason started with $\alpha$ lollipops. Then he had $\beta$ after giving some to Denny. So he gave Denny $\alpha-\beta=\lambda$. The answer is $\lambda$. Q : Shawn has $\alpha$ toys. For Christmas, he got $\beta$ toys each from his mom and dad. How many toys does he have now? A: Shawn started with $\alpha$ toys If he got $\beta$ toys each from his mom and dad, then that is $\lambda$ more toys $\alpha+\lambda=\Pi$. The answer is $\Pi$. $\mathrm{Q}:$ There were $\alpha$ computers in the server room. $\beta$ more computers were installed each day, from monday to thursday. How many computers are now in the server room ? A : There were originally $\alpha$ computers. For each of four days, $\beta$ more computers were added. So $\beta *$ four $=\lambda$ computers were added. $\alpha+\lambda$ is $\Pi$. The answer is $\Pi$. $Q$; Michael had $\alpha$ golf balls. On tuesday, he lost $\beta$ golf balls. On wednesday, he lost $\lambda$ more. How many golf balls did he have at the end of wednesday ? A : Michael started with $\alpha$ golf balls. After losing $\beta$ on tuesday, he had $\alpha-\beta=\Pi$. After losing $\lambda$ more, he had $\Pi-\lambda=\mu$ golf balls. The answer is $\mu$. Q : Olivia has $\$ \alpha$. She bought five bagels for $\$ \beta$ each. How much money does she have left ? A: Olivia had $\alpha$ dollars . 5 bagels for $\beta$ dollars each will be $5 \mathrm{x} \beta=\lambda$ dollars. So she has $\alpha-\lambda$ dollars left $\alpha-\lambda$ is $\Pi$. The answer is $\Pi$.

## Other tasks

Thought: Jamal Murray is a basketball player. Being perfect from the line is part of basketball.
Thought: PERSON is a basketball player. Being perfect from the line is part of basketball.
Thought: Jamal Murray is a basketball player. Being ACTIVITY is part of basketball.

Thought: Today is $\mathbf{0 4} / \mathbf{1 9} / 1969.24$ hours later is one day after today, which would be 04/20/1969.
Thought: Today is DATE. 24 hours later is one day after today, which would be DATE.

Thought: $1<2<\mathbf{3}<\mathbf{4}<\mathbf{5}<\mathbf{6}<\mathbf{7}<\mathbf{8}<9$
Thought: $\varsigma<\phi<\gamma<\delta<\zeta<\chi<\epsilon<\pi<v$

## Abstract Symbols



## OOD Symbols

- Instead of replacing symbols with abstract outputs, replace with "OOD" symbols
- 5 toys $\rightarrow 5.5$ toys
- Fractions don't appear in GSM
- Jamal Murray $\rightarrow$ Adair Foster
- Randomly generated name
- 04/19/1969 $\rightarrow$ 04/30/3069
- Date in the future
- $1<2 \rightarrow 11<23$
- The task involves sorting integers


## OOD Symbols



## Few-shot learning?

## 4SYMBOLIC• (SORTING)

| Question: $7,8,4,1,2,9,3,6,5$ | DIRECT | $46.0 \%$ |
| :--- | :--- | :--- |
| Thought: $\mathbf{1}<\mathbf{2}<\mathbf{3}<\mathbf{4}<\mathbf{5}<\mathbf{6}<\mathbf{7}<\mathbf{8}<\mathbf{9}$ | COT (Table 32) | $60.6 \%$ |
| Thought: $\varsigma<\phi<\gamma<\delta<\zeta<\chi<\epsilon<\boldsymbol{\pi}<\boldsymbol{v}$ | $C_{\text {symb_abs }}(p)$ (Table 35) | $61.8 \%$ |
| Thought: $\mathbf{1 1}<\mathbf{2 3}<\mathbf{3 4}<\mathbf{4 8}<\mathbf{5 6}<\mathbf{6 3}<\mathbf{7 2}<\mathbf{8 5}<\mathbf{9 5}$ | $C_{\text {symb_ood }}(p)$ (Table 42) | $80.0 \%$ |

- With standard prompt, the model tends to generate the count 1, 2, $\ldots, 9$
- OOD prompt is better at "reminding" the model of the task

Part 2: Patterns

## Symbols，Patterns，Text

－MATHEMATICAL
Question：Shawn has five toys．For Christmas，he got two toys each from his mom and dad．How many toys does he have now？
Thought：Shawn started with $\mathbf{5}$ toys．If he got $\mathbf{2}$ toys each from his mom and dad，then that is $\mathbf{4}$ more toys $5+4=9$
Question：Jason had 20 lollipops．He gave Denny some lollipops．Now Jason has 12 lollipops．How many lollipops did Jason give to Denny？
Thought：Jason started with 20 lollipops．Then he had 12 after giving some to Denny．So he gave Denny $20-12=8$

## －COMMONSENSE（SPORTS）

Question：Is the following sentence plausible？＂Jamal Murray was perfect from the line．＂
Thought：Jamal Murray is a basketball player．Being perfect from the line is part of basketball
Question：Is the following sentence plausible？＂Joao Moutinho caught the screen pass in the NFC champi－ onship．＂
Thought：Joao Moutinho is a soccer player．The NFC championship is part of American football，not soccer．

## －COMMONSENSE－（DATE）

Question：It is $\mathbf{4 / 1 9 / 1 9 6 9}$ today．What is the date 24 hours later in MM／DD／YYYY？
Thought：＜calculation〉Today is $\mathbf{0 4 / 1 9 / 1 9 6 9}$ ． 24 hours later is one day after today，which would be $\mathbf{0 4 / 2 0 / 1 9 6 9}$ ．＜output〉 The answer is $\mathbf{0 4 / 2 0 / 1 9 6 9}$ ．
Question：The concert was scheduled to be on $\mathbf{0 6} / \mathbf{0 1} / \mathbf{1 9 4 3}$ ，but was delayed by one day to today．What is the date 10 days ago in MM／DD／YYYY？
Thought：＜calculation $\rangle$ One day after $06 / 01 / 1943$ is $\mathbf{0 6 / 0 2 / 1 9 4 3}$ ，so today is $\mathbf{0 6 / 0 2 / 1 9 4 3}$ ．＜output〉 10 days before today is $05 / 23 / 1943$ ．
¢SYMBOLIC （Sorting）
Question： $3,1,2,7,8,5,6,9,4$
Thought： $1<2 \ldots<9$

Thought： $1<2 \ldots<9$

## What if all the math is wrong?

## Abstract symbols

```
Q: If there are 3 cars in the parking lot and 2 more cars
arrive, how many cars are in the parking lot?
Thought (T): There are originally 3 cars. 2 more cars
arrive. 3 + 2 = 5.
A:The answer is 5 cars.
Q: Leah had 32 chocolates and her sister had 42. If they
ate 35, how many pieces do they have left in total?
Thought (T): Originally, Leah had 32 chocolates. Her sister
had 42. So in total they had 32+42 = 74. After eating 35,
they had 74-35 = 39.
```


## A: The answer is 39 pieces.

```
Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
```

Q: If there are 3 cars in the parking lot and 2 more cars
arrive, how many cars are in the parking lot?
Thought (T): There are originally 3 cars. 2 more cars
arrive. 3 + 2 = 7.
A: The answer is 5 cars.
Q: Leah had 32 chocolates and her sister had 42. If they
ate 35, how many pieces do they have left in total?
Thought (T): Originally, Leah had 32 chocolates. Her
sister had 42. So in total they had 32+42 = 50. After
eating 35, they had 74-35 = 25.
A: The answer is 39 pieces.
Q: Shawn has five toys. For Christmas, he got two toys
each from his mom and dad. How many toys does he have now?
T:

```

\section*{Wrong math}

Performance does not change!

\section*{Other Tasks}

\section*{Wrong Patterns Drastically Impact SPORTS}
Thought: Jamal Murray is a basketball player. Being perfect from the line is part of
basketball.
CoT (Table 31) \(\quad 93.67 \%\) soccer.
- \(50 \%\) is random baseline - the model is intentionally trying to generate misleading outputs!?
- The role of label correctness is task dependent - as long as the model can be reminded of the task

\footnotetext{
Kim, Junyeob, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee, Kang Min Yoo, and Taeuk Kim. "Ground-Truth Labels Matter: A Deeper Look into Input-Label Demonstrations." arXiv preprint arXiv:2205.12685 (2022).
}

\section*{What if we remove all the patterns?}

\section*{No patterns}

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. \(3+2=5\).

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35 , how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had \(32+42=74\). After eating 35 , they had \(74-35=39\).

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

T: There are originally 3 cars. 2 more cars arrive.
A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42 . If they ate 35, how many pieces do they have left in total?

T: Originally, Leah had 32 chocolates. Her sister had 42.
So in total they had 74. After eating 35, they had 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?
\(T\) :
T:

\section*{No patterns results (outcome)}

\title{
What if we delete the text-and
} just keep the patterns?

\section*{No Text}

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. \(3+2=5\).

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had \(32+42=74\). After eating 35, they had \(74-35=39\).

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
\(\mathrm{T}: 3+2=5\)

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35 , how many pieces do they have left in total?
\(\mathrm{T}: 32+42=74.74-35=39\).

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

\section*{Patterns are necessary but not sufficient}

Correctness is task dependent - as long as they can remind the model of the task!

Part 3: Text

\section*{Change the grammatical style of the text, we will}

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and DIRECT
dad. How many toys does he have now?
Thought: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then
CoT (Table 29) \(27.37 \%\) that is 4 more toys. \(5+4=9\).
Thought: Teddy started with 5 cookies. If he got 2 cookies each from his Jenna and \(C_{\text {text_diff_entities }}(p)\) (Table 59) \(16.60 \%\)
Rehan, then that is 4 more cookies. \(5+4=9\).
Thought: Capacity of one bus is 198 passengers \(/ 9\) buses \(=22\) passengers in one bus. \(C_{\text {text_rand }}(p)(\) Table 61\() \quad 2.98 \%\)
Thus, 5 buses can fit \(22 * 5=110\) passengers.
\(C_{\text {text_yoda_question }}(p)\) (Table 73) \(\quad 27.09 \%\)
\(C_{\text {text_yoda_thought }}(p)\) (Table 70) \(\quad 23.22 \%\)
Thought: With 5 toys, Shawn started. 2 toys each from his mom and dad, if he got, \(C_{\text {text_yoda_thought }}(p)\) (Table 70) then that is 4 more toys. \(5+4=9\).
Thought: With 5 toys, Shawn started. 2 toys each from his mom and dad, if he got, \(C_{\text {text_yoda_both }}(p)\) (Table 73) \(22.19 \%\) then that is 4 more toys. \(5+4=9\).
Thought: dad, he got 5 toys. then started mom 2 each is more that from If his and toys. \(C_{\text {text_inter_shuf }}(p)\) (Table 67) \(\quad 10.84 \%\) toys 4 with Shawn \(5+4=9\).
Thought: with Shawn toys 5 started. dad, from more 2 his toys then is toys he mom \(C_{\text {text_intra_shuf }}(p)\) (Table 64) \(17.01 \%\) got that each 4 and If. \(5+4=9\).

\section*{Performance \(\propto\) change}

Changing the question doesn't affect performance

Part 4: Symbiosis

\section*{Symbiosis of Text and Patterns Enables effective CoT}
\(\Longrightarrow \mathbf{Q 3} \mapsto \mathrm{A}\) pet store currently has 5 dogs, 2 cats, and 10 birds. How many legs in total do the pets in the store have?
\(\diamond \mathcal{T}_{\mathrm{L}}^{\ulcorner } \mathrm{CoT}(\mathrm{p})_{]}^{\top} \mapsto\) There are 5 dogs, 2 cats, and 10 birds. 5 dogs have 4 legs each, so \(5 * 4=20\) legs. 2 cats have 4 legs each, so \(2 * 4=8\) legs. 10 birds have 2 legs each, so \(10 * 2=20\) legs. So the total number of legs is \(20+8+20=48\). The answer is \(48 . \checkmark\)
\(\leftrightarrow \mathcal{T}_{\llcorner }^{\ulcorner } C_{\text {pat_only }}(p)_{\lrcorner} \mapsto 5+2+10=17\). The answer is \(17 . \boldsymbol{X}\)
\(\Rightarrow \mathbf{Q 6} \mapsto\) Today is Christmas Eve of 1937 . What is the date one week ago from today in MM/DD/YYYY?
\(\diamond \mathcal{T}_{L}^{\ulcorner } \mathrm{CoT}(\mathrm{p})^{\top} \mapsto\) Today is \(12 / 24 / 1937\). One week ago from today is \(12 / 17 / 1937\). So the answer is \(12 / 17 / 1937 . \checkmark\)
\(\Leftrightarrow \mathcal{T}_{\llcorner }^{r} C_{\text {pat_only }}(p)_{\lrcorner}^{\top} \mapsto 12 / 20 / 1937 X\)

\section*{Symbiosis of Text and Patterns Enables effective CoT}
\(\overline{\mathrm{Q3}} \mapsto \mathrm{~A}\) pet store currently has 5 dogs, 2 cats, and 10 birds. How many legs in total do the pets in the store have?
\(\mathcal{T}_{2}^{\top} \operatorname{CoT}(\mathrm{p})_{\lrcorner}^{\top} \mapsto\) There are 5 dogs, 2 cats, and 10 birds. 5 dogs have 4 legs each, so \(5 * 4=20\) legs. 2 cats have 4 legs each, so \(2 * 4=8\) legs. 10 birds have 2 legs each, so \(10 * 2=20\) legs. So the total number of legs is \(20+8+20=48\). The answer is \(48 . \checkmark\)
\(\diamond \mathcal{T}_{L}^{\top} C_{\text {pat_none }}(p)_{\lrcorner}{ }^{\top} \mapsto\) The pet store has 5 dogs, 2 cats, and 10 birds. So the total number of legs is \(5+2+10=17\). The answer is \(17 . \boldsymbol{x}\)
\(\Leftrightarrow \mathbf{Q 4} \mapsto\) Yes or no: Is the following sentence plausible? "Robert Woods killed the powerplay".
\(\bullet \mathcal{T}_{\llcorner }^{\ulcorner } \mathrm{CoT}(\mathrm{p})_{\lrcorner} \downarrow \mapsto\) Robert Woods is a football player. Killing the powerplay is part of hockey, not football. So the answer is no. \(\checkmark\)
\(\diamond \mathcal{T}_{\llcorner }^{\ulcorner } C_{\text {pat_none }}(p)_{\lrcorner} \downarrow \mapsto\) Robert Woods is a football player. Killing the powerplay is a part of hockey. So the answer is yes. \(\boldsymbol{x}\)

The Search Engine Analogy

Query \(\cong\) Prompt
Query Intent \(\xlongequal{\cong}\) Task Understanding
Database \(\cong\) Weights

\section*{The Search Engine Analogy}
- For SPORTS, measure the popularity of activities and sports person for cases where COT is exclusively correct
- CoT is especially helpful for rare entities
\#Google search results for activity and person

\section*{Concise Chain of Thought}
- Helps us to identify the bare minimum necessary for good performance
\begin{tabular}{llllll}
\hline \multirow{2}{*}{ Task } & \multicolumn{2}{c}{ PaLM-62B } & & \multicolumn{2}{c}{ PaLM-540B } \\
\cline { 2 - 3 } \cline { 5 - 6 } & CoT & CCOT (ours) & & CoT & CCOT (ours) \\
\hline GSM-8K & \(27.4 \%\) & \(\mathbf{2 9 . 1} \%\) & & \(53.2 \%\) & \(\mathbf{5 6 . 2} \%\) \\
\hline DATE & \(44.7 \%\) & \(\mathbf{5 1 . 3} \%\) & & \(65.3 \%\) & \(\mathbf{6 9 . 1} \%\) \\
\hline SPORTS & \(93.7 \%\) & \(\mathbf{9 4 . 6} \%\) & & \(95.4 \%\) & \(\mathbf{9 7 . 4} \%\) \\
\hline SORTING & \(55.3 \%\) & \(\mathbf{6 0 . 2} \%\) & & \(71.2 \%\) & \(\mathbf{8 8 . 6} \%\) \\
\hline
\end{tabular}
- 1.8x fewer tokens

\section*{Not Included in the Presentation}
- Results on GPT-3, CODEX, PaLM-540B
- Similar trends across models
- Detailed prompts
- Error analysis

\section*{What makes the chain of thought prompting so effective?}
- The thought makes the model think about the problem?
- The thought helps the model learn better
- The thought serves as an additional example of the task
- The thought helps the model remind of the task
- The thought helps extract relevant information for solving the task

\section*{What makes chain of thought prompting so effective?}

Text: Extracting common sense, copy mechanism

Patterns: Task understanding, final answer generation

Introduce text in your problem, make sure the prompt conveys the task (can remind the model of the task!)

Paper

Figure 5: Counterfactual graph for our work: symbols \(S\), patterns \(P\), text \(T\) are the key components of our work. The outcome is binary \(y\) (accuracy). We make a simplifying assumption that these are identifiable. \(S\) and may be confounded by an unidentifiable \(C\), and this is a limitation of our work.
\[
A T E=\mathbb{E}_{D}\left[y(p)-y\left(C_{z}(p)\right)\right]
\]```

