Text and Patterns: For Effective Chain of Thought, It Takes Two to Tango

Aman Madaan* and Amir Yazdanbakhsh* Carnegie Mellon University *Google Research, Brain Team amadaan@cs.cmu.edu, ayazdan@google.com (Equal Contribution)

Paper

Background

Solving middle-school math problems

Q: Shawn has 5 toys. For Christmas, he got 2 toys each from his mom and dad. How many toys does he have now?

Fine-tuning

Few-shot prompting (in-context learning/autocomplete)

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

A:

The answer is 9 toys

Design of prompt (prompt engineering) is critical

Prompt

Chain of thought prompting

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. A: The answer is 5 cars. Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? _____ Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39. A: The answer is 39 pieces. Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now? T:

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed Chi, Quoc Le, and Denny Zhou. "Chain of thought prompting elicits reasoning in large language

models." arXiv preprint arXiv:2201.11903 (2022).

Adds a thought to the prompt that explains the answer - *the thought process*.

Chain of thought prompting is extremely effective

How PaLM-SayCan Works

Large Language Models are Zero-Shot Reasoners

Yutaka Matsuo

Takeshi Kojima The University of Tokyo t.kojima@weblab.t.u-tokyo.ac.jp

Shixiang Shane Gu Google Research, Brain Team

Machel Reid Google Research*

Yusuke Iwasawa The University of Tokyo The University of Tokyo This demo shows a PaLM-enabled helper robot performing a series of complex tasks using chain of thought prompting and the step-by-step solution needed to carry out the requests.

https://say-can.github.io/

Google Research

LEAST-TO-MOST PROMPTING ENABLES COMPLEX **REASONING IN LARGE LANGUAGE MODELS**

Denny Zhou* Nathanael Schärli Le Hou Jason Wei Nathan Scales Xuezhi Wang

Dale Schuurmans Claire Cui Olivier Bousquet Quoc Le Ed Chi

Google Research

SELF-CONSISTENCY IMPROVES CHAIN OF THOUGHT **REASONING IN LANGUAGE MODELS**

Xuezhi Wang^{†‡}, Jason Wei[†], Dale Schuurmans[†], Quoc Le[†], Ed H. Chi[†], Sharan Narang[†], Aakanksha Chowdhery[†], Denny Zhou^{†§} [†]Google Research, Brain Team [‡]xuezhiw@google.com,[§]dennyzhou@google.com

What makes chain of thought prompting so effective?

What makes the chain of thought prompting so effective?

- The thought makes the model think about the problem?
- The thought helps the model learn better
- The thought serves as an additional example of the task
- The thought helps the model remind of the task
- The thought helps extract relevant information for solving the task

Language Models are Few-Shot Learners

What makes chain of thought prompting so effective

Approach

- Counterfactual prompting:
 - Change one *knob* at a time (symbol, patterns, text)

What if? prompting (counterfactual prompting)

Q: If there are α cars in the parking lot and β more cars arrive, how many cars are

Evaluating counterfactual prompts

Empirical results: difference in final <u>outcome</u>

Attention patterns: difference in <u>mechanism</u>

Experimental Setup

Setup

- Models: PaLM-62B, PaLM-540B, CODEX, GPT-3
- Run each experiment with three seeds, report average etc.
- Results here are for PaLM-62B

Tasks

◄ MATHEMATICAL ►

 $\Rightarrow \Omega \mapsto$ Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

 $\mathfrak{S} \mathfrak{T} \to \mathfrak{S}$ Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5

+4 = 9.

 $\blacklozenge \mathcal{A} \mapsto$ The answer is 9.

\triangleleft Commonsense \triangleright (Sports)

- \Rightarrow Q \mapsto Is the following sentence plausible? "Jamal Murray was perfect from the line."
- $\mathfrak{T} \mapsto$ Jamal Murray is a basketball player. Being perfect from the line is part of basketball.
- $\blacklozenge \mathcal{A} \mapsto$ The answer is yes.
- \triangleleft Commonsense \blacktriangleright (Date)
- \Rightarrow Q \mapsto It is 4/19/1969 today. What is the date 24 hours later in MM/DD/YYYY?
- ◆ $\mathfrak{T} \mapsto$ Today is 04/19/1969. 24 hours later is one day after today, which would be 04/20/1969.
- $\blacklozenge \mathcal{A} \mapsto$ The answer is 04/20/1969.

\triangleleft Symbolic \triangleright (Sorting)

- ⇒ $Q \mapsto 2, 4, 3, 8, 9, 6, 7, 1.$
- $\mathfrak{T} \mapsto 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9.$
- $\blacklozenge \mathcal{A} \mapsto \text{The answer is } 1, 2, 3, 4, 5, 6, 7, 8, 9$

Symbols, Patterns, Text

◄ MATHEMATICAL ►

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Thought: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?

Thought: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8.

 \triangleleft Commonsense \blacktriangleright (Sports)

Question: Is the following sentence plausible? "Jamal Murray was perfect from the line."

Thought: Jamal Murray is a basketball player. Being perfect from the line is part of basketball.

Question: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

Thought: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer.

 \triangleleft Commonsense \blacktriangleright (Date)

Question: It is 4/19/1969 today. What is the date 24 hours later in MM/DD/YYYY?

Thought: (calculation) Today is 04/19/1969. 24 hours later is one day after today, which would be 04/20/1969. (output) The answer is 04/20/1969.

Question: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

Thought: \langle calculation \rangle One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. \langle output \rangle 10 days before today is 05/23/1943.

 \triangleleft SYMBOLIC \triangleright (SORTING)

Question: 3, 1, 2, 7, 8, 5, 6, 9, 4

Thought: 1 < 2 ... < 9

Part 1: Symbols

What if we replace all the numbers with greek αlphaβets?

Abstract symbols

```
Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?
```

```
Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
```

A: The answer is 5 cars.

```
Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?
```

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Т:

Q: If there are α cars in the parking lot and β more cars arrive, how many cars are in the parking lot?

T: There are originally α cars. β more cars arrive. α + β = $\lambda.$,

A: The answer is λ cars.

Q: Leah had α chocolates and her sister had β . If they ate λ , how many pieces do they have left in total? T: Originally, Leah had α chocolates. Her sister had β . So in total they had $\alpha + \beta = \pi$. After eating λ , they had $\pi - \lambda = \mu$.

A: The answer is μ pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

T:

The test questions are <u>not</u> changed. ²¹

Abstract symbols results (outcome)

Performance does not change!

Abstract symbols results (mechanism)

O: There are 5 trees the grove. Grove workers will plant trees in grove today. After they are done, there will be 2.1 trees . How many trees did the grove workers plant today ? A : There are 5 trees originally . Then there were 2 1 trees after more were planted. So there must have been 2 - 5 = 1. The answer is 6. Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? A: There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5. The answer is 5. Q: Leah had 3.2 chocolates and her sister had 4.2. If they at e.3, how many pieces do they have left total ? A : Originally, Leah had 3 2 chocolates. Her sister had 4 2. So total they had 32 + 42 = 74. After eating 3 5 they had 4 - 3 5 = 3 9. The answer is 3 9. Q : Jason had 2 0 lollipops . He gave Denny some lollipops . Now Jason has 1 2 lollipops . How many lollipops did Jason give to Denny ? A : Jason started with 2 lollipops . Then he had 2 after giving some to Denny. So he gave Denny 20 - 12 = 8. The answer is $8 \cdot Q$: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now? A : Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys .5 + 4 = 9. The answer is 9.Q: There were nine computers in the server room. Five more computers were installed each day, from monday to thursday. How many computers are now in the server room ? A : There were originally 9 computers . For each of 4 days , 5 more computers were added. So 5 * 4 = 20 computers were added. 9 + 20 is 29. The answer is 29. Q: Michael had 58 golf balls. On tuesday, he lost 2 3 golf balls. On wednesday, he lost 2 more. How many golf balls did he have at the end of wednesday? A : Michael started with 5 8 golf balls . After losing 2 3 on tuesday , he had 5 8 - 2 3 = 3 5 . After losing 2 more, he had 35-2 = 33 golf balls. The answer is 33.0 Olivia has \$23. She bought five bagels for \$3 each. How much money does she have left? A : Olivia had 2 3 dollars . 5 bagels for 3 dollars each will be 5 \times 3 = 1 5 dollars . So she has 2 3 - 1 5 dollars left . 2 3 - 1 5 is 8 . The answer is 8

Identical mechanism!

O: There are α trees in the grove. Grove workers will plant trees in the grove today. After they are done, there will be β one trees. How many trees did the grove workers plant today? A : There are α trees originally. Then there were β one trees after some more were planted. So there must have been β one - $\alpha = \lambda$. The answer is λ . O: If there are α cars in the parking lot and β more cars arrive, how many cars are the parking lot? A : There are originally α cars. β more cars arrive, $\alpha + \beta = \lambda$. The answer is λ , O: Leah had α chocolates and her sister had β . If they at e λ , how many pieces do they have left in total ? A : Originally, Leah had α chocolates. Her sister had β . So in total they had $\alpha + \beta = \pi$ After eating λ , they had $\pi - \lambda = \mu$. The answer is $\mu \cdot Q$: Jason had α lollipops. He gave Denny some . Now Jason has β lollipops. How many lollipops did Jason give to Denny? A : Jason started with α lollipops. Then he had β after giving some to Denny. So he gave Denny $\alpha - \beta = \lambda$. The answer is $\lambda \cdot Q$: Shawn has α toys. For Christmas, he got β toys each from his mom and dad. How many toys does he have now? A : Shawn started with α toys If he got β toys each from his mom and dad, then that is λ more toys, $\alpha + \lambda = \pi$. The answer is π . O: There were α computers in the server room. β more computers were installed each day, from monday to thursday. How many computers are now in the server room ? A : There were originally α computers. For each of four days, β more computers were added. So β * four = λ computers were added. $\alpha + \lambda$ is π . The answer is π . Q: Michael had α golf balls. On tuesday, he lost β golf balls. On wednesday, he lost λ more. How many golf balls did he have at the end of wednesday? A : Michael started with α golf balls. After losing β on tuesday, he had $\alpha - \beta = \pi$. After losing λ more, he had $\pi - \lambda = \mu$ golf balls. The answer is $\mu \cdot Q$: Olivia has α . She bought five bagels for β each. How much money does she have left? A Olivia had α dollars. 5 bagels for β dollars each will be 5 x $\beta = \lambda$ dollars. So she has $\alpha - \lambda$ dollars left. $\alpha - \lambda$ is π . The answer is π .

Other tasks

Thought: Jamal Murray is a basketball player. **Being perfect from the line** is part of basketball.

Thought: PERSON is a basketball player. **Being perfect from the line** is part of basketball.

Thought: Jamal Murray is a basketball player. **Being ACTIVITY** is part of basketball.

Thought: Today is 04/19/1969. 24 hours later is one day after today, which would be 04/20/1969.

Thought: Today is **DATE**. 24 hours later is one day after today, which would be **DATE**.

Thought: 1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9Thought: $\varsigma < \phi < \gamma < \delta < \zeta < \chi < \epsilon < \pi < \upsilon$ SPORTS

DATE

SORTING

Abstract Symbols

OOD Symbols

- Instead of replacing symbols with abstract outputs, replace with "OOD" symbols
 - \circ 5 toys \rightarrow 5.5 toys
 - Fractions don't appear in GSM
 - $\circ \quad \text{Jamal Murray} \rightarrow \text{Adair Foster}$
 - Randomly generated name
 - $\circ ~~04/19/1969 \to 04/30/3069$
 - Date in the future
 - $\circ \quad 1 < 2 \rightarrow 11 < 23$
 - The task involves sorting integers

Few-shot *learning*?

Question: 7, 8, 4, 1, 2, 9, 3, 6, 5	DIRECT	46.0%			
Thought: $1 < 2 < 3 < 4 < 5 < 6 < 7 < 8 < 9$	CoT (Table 32)	60.6%			
Thought: $\varsigma < \phi < \gamma < \delta < \zeta < \chi < \epsilon < \pi < \upsilon$	$C_{\text{symb}_{abs}}(p)$ (Table 35)	61.8%			
Thought: 11 < 23 < 34 < 48 < 56 < 63 < 72 < 85 < 95	$C_{\text{symb_ood}}(p)$ (Table 42)	80.0%			

- With standard prompt, the model tends to generate the count 1, 2, ..., 9
- OOD prompt is better at "reminding" the model of the task

Part 2: Patterns

Symbols, Patterns, Text

◄ MATHEMATICAL ►

Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Thought: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. 5 + 4 = 9.

Question: Jason had 20 lollipops. He gave Denny some lollipops. Now Jason has 12 lollipops. How many lollipops did Jason give to Denny?

Thought: Jason started with 20 lollipops. Then he had 12 after giving some to Denny. So he gave Denny 20 - 12 = 8.

 \triangleleft Commonsense \blacktriangleright (Sports)

Question: Is the following sentence plausible? "Jamal Murray was perfect from the line."

Thought: Jamal Murray is a basketball player. Being perfect from the line is part of basketball.

Question: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

Thought: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer.

 \triangleleft Commonsense \blacktriangleright (Date)

Question: It is 4/19/1969 today. What is the date 24 hours later in MM/DD/YYYY?

Thought: (calculation) Today is 04/19/1969. 24 hours later is one day after today, which would be 04/20/1969. (output) The answer is 04/20/1969.

Question: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

Thought: $\langle calculation \rangle$ One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. $\langle output \rangle$ 10 days before today is 05/23/1943.

 \triangleleft SYMBOLIC \triangleright (SORTING)

Question: 3, 1, 2, 7, 8, 5, 6, 9, 4

Thought: 1 < 2 ... < 9

What if all the math is wrong?

Abstract symbols

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

```
Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
```

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.

T:

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 7.

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 50. After eating 35, they had 74 - 35 = 25.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

| *T*:

Wrong math

Performance does not change!

Wrong Patterns Drastically Impact SPORTS

Thought: Jamal Murray is a basketball player. Being perfect from the line is part of
basketball.COT (Table 31)93.67%**Thought:** Jamal Murray is a soccer player. Being perfect from the line is part of
soccer. $C_{pat_wrong}(p)$ (Table 55)46.02%

- 50% is random baseline the model is intentionally trying to generate misleading outputs!?
- The role of label correctness is <u>task dependent</u> as long as the model can be reminded of the task

Kim, Junyeob, Hyuhng Joon Kim, Hyunsoo Cho, Hwiyeol Jo, Sang-Woo Lee, Sang-goo Lee, Kang Min Yoo, and Taeuk Kim. "Ground-Truth Labels Matter: A Deeper Look into Input-Label Demonstrations." *arXiv* preprint arXiv:2205.12685 (2022).

What if we remove all the patterns?

No patterns

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

```
Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
```

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Т:

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

T: There are originally 3 cars. 2 more cars arrive. A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

T: Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 74. After eating 35, they had 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

T:

The test questions are <u>not</u> changed. ³⁷

No patterns results (outcome)

Accuracy no pattern Direct Cot 📕 Abstract 📕 Wrong Pattern 🚦 No Pattern 30 20 10 0 GSM (Statistically) significant drop

What if we delete the text and just keep the patterns?

No Text

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

```
Thought (T): There are originally 3 cars. 2 more cars arrive. 3 + 2 = 5.
```

A: The answer is 5 cars.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

Thought (T): Originally, Leah had 32 chocolates. Her sister had 42. So in total they had 32 + 42 = 74. After eating 35, they had 74 - 35 = 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

Т:

Q: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot?

T: 3 + 2 = 5.

Q: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total?

T: 32 + 42 = 74. 74 - 35 = 39.

A: The answer is 39 pieces.

Q: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?

T:

The test questions are <u>not</u> changed. ⁴⁰

Patterns are necessary but not sufficient

Correctness is task dependent – as long as they can remind the model of the task!

Part 3: Text

Change the grammatical style of the text, we will

Question / Thought	Prompt Type	Solve Rate				
 ✓ MATHEMATICAL ► 						
Question: Shawn has five toys. For Christmas, he got two toys each from his mom and dad. How many toys does he have now?	DIRECT	10.11%				
Thought: Shawn started with 5 toys. If he got 2 toys each from his mom and dad, then that is 4 more toys. $5 + 4 = 9$.	CoT (Table 29)	27.37%				
Thought: Teddy started with 5 cookies. If he got 2 cookies each from his Jenna and Rehan, then that is 4 more cookies. $5 + 4 = 9$.	$C_{\texttt{text_diff_entities}}(p)$ (Table 59)	16.60%				
Thought: Capacity of one bus is 198 passengers / 9 buses = 22 passengers in one bus. Thus, 5 buses can fit $22 * 5 = 110$ passengers.	$C_{\text{text}_{\text{rand}}}(p)$ (Table 61)	2.98%				
-	$C_{\text{text_yoda_question}}(p)$ (Table 73)	27.09%				
Thought: With 5 toys, Shawn started. 2 toys each from his mom and dad, if he got, then that is 4 more toys. $5 + 4 = 9$.	$C_{\texttt{text_yoda_thought}}(p)$ (Table 70)	23.22%				
Thought: With 5 toys, Shawn started. 2 toys each from his mom and dad, if he got, then that is 4 more toys. $5 + 4 = 9$.	$C_{\texttt{text_yoda_both}}(p)$ (Table 73)	22.19%				
Thought: dad, he got 5 toys. then started mom 2 each is more that from If his and toys. toys 4 with Shawn $5 + 4 = 9$.	$C_{\texttt{text_inter_shuf}}(p)$ (Table 67)	10.84%				
Thought: with Shawn toys 5 started. dad, from more 2 his toys then is toys he mom got that each 4 and If. $5 + 4 = 9$.	$C_{\texttt{text_intra_shuf}}(p)$ (Table 64)	17.01%				

Changing the question doesn't affect performance

Analogical Reasoning

Part 4: Symbiosis

Symbiosis of Text and Patterns Enables effective CoT

 \Rightarrow Q3 \mapsto A pet store currently has 5 dogs, 2 cats, and 10 birds. How many legs in total do the pets in the store have?

• $\mathfrak{T}[COT(p)] \rightarrow$ There are 5 dogs, 2 cats, and 10 birds. 5 dogs have 4 legs each, so 5 * 4 = 20 legs. 2 cats have 4 legs each, so 2 * 4 = 8 legs. 10 birds have 2 legs each, so 10 * 2 = 20 legs. So the total number of legs is 20 + 8 + 20 = 48. The answer is 48.

 $\mathfrak{T}^{r}_{L}C_{pat_only}(p) \rightarrow 5 + 2 + 10 = 17$. The answer is 17.

 \Rightarrow Q6 \mapsto Today is Christmas Eve of 1937. What is the date one week ago from today in MM/DD/YYYY?

 $\mathfrak{T}[CoT(p)] \mapsto \text{Today is } 12/24/1937. \text{ One week ago from today is } 12/17/1937. \text{ So the answer is } 12/17/1937.$

Symbiosis of Text and Patterns Enables effective CoT

 \Rightarrow Q3 \mapsto A pet store currently has 5 dogs, 2 cats, and 10 birds. How many legs in total do the pets in the store have?

◆ \mathcal{T} [CoT(p)] → There are 5 dogs, 2 cats, and 10 birds. 5 dogs have 4 legs each, so 5 * 4 = 20 legs. 2 cats have 4 legs each, so 2 * 4 = 8 legs. 10 birds have 2 legs each, so 10 * 2 = 20 legs. So the total number of legs is 20 + 8 + 20 = 48. The answer is 48.

• $\mathcal{T}[C_{pat_none}(p)] \mapsto$ The pet store has 5 dogs, 2 cats, and 10 birds. So the total number of legs is 5 + 2 + 10 = 17. The answer is 17.

 \Rightarrow Q4 \mapsto Yes or no: Is the following sentence plausible? "Robert Woods killed the powerplay".

 $\mathfrak{T}_{COT}(p)$ \to Robert Woods is a football player. Killing the powerplay is part of hockey, not football. So the answer is no. $\mathfrak{T}_{C_{pat_none}}(p)$ \to Robert Woods is a football player. Killing the powerplay is a part of hockey. So the answer is yes. $\mathfrak{T}_{C_{pat_none}}(p)$

Query ≅ Prompt

Database ≅ Weights

Also see: https://ai.stanford.edu/blog/understanding-incontext/

The Search Engine Analogy

- For SPORTS, measure the popularity of activities and sports person for cases where COT is exclusively correct
- CoT is especially helpful for rare entities

Concise Chain of Thought

• Helps us to identify the bare minimum necessary for good performance

Task	PaLM-62B		PaLM-540B	
	СоТ	CCOT (ours)	СоТ	CCOT (ours)
GSM-8K	27.4%	29.1 %	53.2%	56.2 %
DATE	44.7%	51.3%	65.3%	69.1 %
Sports	93.7%	94.6 %	95.4%	97.4 %
Sorting	55.3%	60.2 %	71.2%	88.6%

• 1.8x fewer tokens

Not Included in the Presentation

- Results on GPT-3, CODEX, PaLM-540B
 - Similar trends across models
- Detailed prompts
- Error analysis

What makes the chain of thought prompting so effective?

- The thought makes the model think about the problem?
- The thought helps the model learn better
- The thought serves as an additional example of the task
- The thought helps the model remind of the task
- The thought helps extract relevant information for solving the task

What makes chain of thought prompting so effective?

Figure 5: Counterfactual graph for our work: symbols S, patterns P, text T are the key components of our work. The outcome is binary y (accuracy). We make a simplifying assumption that these are identifiable. S and may be confounded by an unidentifiable C, and this is a limitation of our work.

$$ATE = \mathbb{E}_D[y(p) - y(C_z(p))]$$