
Finding Similar Movies Using Topic
Modeling
Aman Madaan, Ashish Mittal, CS 728 Project Report, IIT Bombay

April 2014

W
We propose a topic modeling based
solution for finding movies like 2 given
movies. We are after a much more

complicated similarity, of the likes which the
standard relations (by the same actor, by the
same producer, etc) will fail to capture. The
similarity we want to tap is plot based. We
discuss the proposed solution, our implemen-
tation and the challenges involved.

1 Introduction

What is common between the Gran Torino, Scent
of a Woman and Dead Poets Society? They all
belong to the genre “Drama”, but so do umpteen
number of other movies. They have a disjoint set
of actors, producers, directors and writers. They
were not released in the same year. Yet, anyone
who has watched all the three movies will instantly
figure out what is similar; all these movies are about
experienced people coaching young fellows, prepar-
ing them for the life ahead. Even though the crux of
these movies, the basic line of thought, is the same,
we cannot tell that they are similar by using the
standard set of obvious relations. It is this similar-
ity that we aim to model.

It is worth emphasizing that even though this re-
port is based on finding similar movies, the problem
is generic and is not limited to any particular do-
main.

We note that content based similarity will be the
most amusing to the end user. Picking out simi-
lar objects based on facts about them is what the
end user expects the computer to do; computers are
supposed to be good at that. The similarity based
on the very nature of objects will be indicative of

intelligence.

1.1 Solution Outline

Movies are about a fixed set of topics, the problem is
determining what these topics are and what do they
mean. The problem of finding the cluster of words
was solved by using LDA. Once the topic distribu-
tions were obtained, we used one of the two rank-
ing algorithms to find the best solution, one based
on KL divergence and another based on the top k
words from dominating topics. We begin by describ-
ing the results of running LDA on the movies dataset
by with flat alpha prior and 250 topics. We then
describe the two ranking strategies in some detail.
This is followed by a discussion on what went wrong
and various fixes used to overcome the problem. We
conclude with details about the front end and some
anecdotal examples.

2 Getting the lines of thoughts

2.1 Movie Plots

We downloaded the Wikipedia dump and used Wik-
ixmlj [5] , a Wikipedia scraping library to get the
pages whose title satisfies the regular expression “
.*film)”. This is in accordance with the Wikipedia
style manual [1] for movies.

We were able to extract a total of 16,139 movies.
The distribution of words in the plot per movie is as
shown.

2.2 Training

LDA was used to learn the words that belong to
each of the clusters. Clearly, LDA does not know
anything about the clusters we are looking for, and

Page 1 of 7

Figure 1: Distribution of number of words in movie
plots for 16139 movies

depends purely on the occurrence and co occurrence
of the words [2]. Table 1 shows some of the topics
learned from the data.

3 Ranking

We used two different ranking strategies, each of
which we describe in this section. Once the LDA
model has been trained, we can calculate a topic
posterior for any movie x. The topic posterior is
essentially a probability distribution of topics for
the given movie. Thus, we get, for each movie
m, P (θ|m) where θ is the topic probability vector,
with each term acting as a weight for that partic-
ular topic. We use this topic posterior in both the
ranking strategies.

3.1 KL Divergence based ranking

Kullback - Leibler divergence[4] is an asymmetric
measure of similarity between 2 probability distri-
butions. Given 2 movies A and B, we first calculate
their topic posterior, θA and θB and then combine
and normalize the two. This is done by using one of
the following strategies :

• Max merge
θC = max(θA, θB)

• Avg merge
θC = (θA + θB)/2

θC , the combined topic distribution, is finally nor-
malized.
For all the movies, i, KL Divergence(θC , θi) is

calculated. The movies rankings in the results are

Figure 2: Example of how KL Divergence yields simi-
larity of two movies. Here [love, ship, war,
conspiracy] are sample topics and the one
with movies is the topic probability modeled
by LDA for the movie.

inversely proportional to this divergence score. Fig-
ure [2] shows a hypothetical ideal case.

3.2 Keyword based Ranking

The motivation for this method was that the movies
similar to both the movies will have common top
topics. For example, if the two movies are about
[war, life struggle] and [life struggle, romance], (i.e.
their θ posterior has high values corresponding to
these topics) then returning movies that are about
life struggle might be a good idea. For both the
movies, the top common topics were chosen. The
words were then given to an inverted index which
returned the words corresponding to these movies.
The returned set of movies were then ranked based
on their topic posteriors, the movies for which the
top common topics had high stakes were placed
above those for which these numbers were lower.

4 Challenges

This section discusses some of the challenges we
faced in implementation of the system.

• Noisy Topics

Since we are using generative model for find-
ing the topics, certain useless topics crop up
after the training. These topics are mainly the
names of characters, places etc. in the plot of
the movie. Some sample noisy topics are shown
in Table 2.

Page 2 of 7

dinosaurs, dinosaur, valley, vineyard, brent, expedition, herd, plateau, yonggary, mammoth tyrannosaurus,
prehistoric, rex, ape, volcano, napa, allosaurus, challenger, pack, pterodactyl, a

players, baseball, player, teams, league, basketball, hockey, sports, season, stadium, games, soccer,
championship, teammates, victory, practice, goal, quarterback, minor, cup, c

jews, nazis, polish, holocaust, concentration, ss, poland, resistance, anti, jew, hitlers, germans, camps,
gestapo, warsaw, auschwitz, czech, reich, occupied, propaganda, c

Table 1: Some topics from the trained model

bond, abby, buck, james, crystal, snake, reggie, raymond, omri, blofeld, python, ning, dolezal,kobayashi,
xiaoqian, goldfinger, mi6, spectre, bonds, vishwanath

alex, sara, joanna, griffin, samantha, erin, alexs, breslin, mara, kemp, saras, clint, tyrone, friar, cory, tama,
susanne, rain, ted, cortland

Table 2: Some noisy topics from the trained model

• High Entropy Posteriors There were some
movies which had very even topic posteriors.
Thus, their kl divergence was small from many
movies and thus such movies kept showing up
for many queries.

• Insufficient Training Data Although our
corpora has 16139 movies, it is by no way rep-
resentative of plethora of genres that define
movies. We found that many movies were miss-
ing from our database. This was because not
all the movie pages have (film) as part of their
title. An immediate improvement is scanning
through the document and looking for sufficient
evidence to classify a document as a movie page.
We plan to add this to the next version of this
system.

• How many topics? Clearly, 250 was pulled
out of no where. How many topics are there
is a difficult figure to guess. Total number of
genres perhaps can take us closer to the right
solution.

5 Attempts at Solving Some Of the
Challenges

We discuss some measure taken to tackle few of the
aforementioned challenges.

5.1 Handling Noisy Topics

• Stemming[6] We stemmed the training cor-
pora in order to reduce sparsity and to prevent
shadowing of topics by a dominant word ap-
pearing in many forms.

• Removal of common topics Some topics
that were present in the distribution of most
movies were removed

• Named Entity Removal Since many of the
noisy topic had names, we removed them using
a Named Entity Recognition library [7].

6 Results

The system did give interesting results for some
movies. Alas, for many movies, the problems listed
above damped the better movies. We have added
some screen shots of the web interface we added to
the system. The output was a list of movies ranked
by using one of the 2 measures above, along with
short plot and keywords. We also display why this
set of movies were chosen.

7 Conclusions

We expected the Named Entity removal would give
better results, but then there were lot many noisy
topics still left, which hints at using supervised ap-
proaches for better topic modeling. With the super-
vised LDA, we can model better topics related to the
domain and thus perhaps get results which concur
with the original idea that motivated this project.

Currently our ranking either checks for distri-
bution similarity or key word similarity, but some
mixed form of similarity measure should yield bet-
ter results. Because that will capture the intuitive-
ness in probability distributions and IRish keyword
match to get best of both worlds.

Page 3 of 7

References

[1] Wikipedia Style manual for movies
http://en.wikipedia.org/wiki/Wikipedia:

Manual_of_Style/Film

[2] Blei, David M., Andrew Y. Ng, and Michael I.
Jordan. ”Latent dirichlet allocation.” the Jour-
nal of machine Learning research 3 (2003): 993-
1022.

[3] http://mallet.cs.umass.edu/

[4] http://en.wikipedia.org/wiki/Kullback\
%E2\%80\%93Leibler_divergence

[5] http://code.google.com/p/wikixmlj/

[6] http://snowball.tartarus.org/
algorithms/porter/stemmer.html

[7] http://nlp.stanford.edu/software/
CRF-NER.shtml

Page 4 of 7

Figure 3: Web interface to moviesim

Page 5 of 7

Figure 4: Web interface to moviesim

Page 6 of 7

Figure 5: Web interface to moviesim

Page 7 of 7

