
Applying Maximum Mean Discrepancy for

obtaining Entity Occurrence Ratios

Aman Madaan

May 8, 2014

1 Introduction

The final exercise was application of Maximum mean discrepancy for learning
entity occurrence ratios. We continue with the same dataset, pruned to remove
all the entities for which there are only single instances, leaving us with 212 dif-
ferent entities. The results indicate that svm is better than mmd for estimating
the class ratios. We discuss the results, possible reasons for error and suggest
ways of improvement.

1.1 Features

As discussed, the features for struct learn take the following form

Etrue E1 : W1a,W1b,W1c...En : Wna,Wnb,Wnc

where Etrue is the true entity Ei (Hand labeled) and the weights are as
defined before.

We now flatten the features using the maximum entity id as follows :

Etrue E1 + 0 ∗MEID : W1aE1 + 1 ∗MEID : W1bE1 + 2 ∗MEID :
W1c...En + 0 ∗ i : WnaEn + 1 ∗ i : WnbEn + 2 ∗ i : Wnc

where MEID is the highest entity id.

1



1.2 Data

Out of the pruned data points (1294), we deleted instances for which only one
mention per class was available. Upon deletion of such points, we were left with
966 rows.

1.2.1 Sampling

Subset.py from the libsvm tools was used for randomly dividing the training
data into training and test sets.

1.3 Training Data

• 807 mentions

• 212 different (entities) classes

• average 3.8 mentions per entity

• median 2 mentions per entity

1.3.1 Test Data

• 159 mentions

• 109 different (entities) classes

• average 1.5 mentions per entity

• median 1 mentions per entity

For this dataset, it was ensured that for every class in the test set,
we have at least one instance in the training set.

2 Code

This section briefly outlines the functionality of the different packages in mmdned.
The MirrorDescentOptimizer by Prof. Sunita Sarawagi was used for solving the
objective.

2.1 Gradient

• MakeMatrices : Calculates matrices A and b required to calculate objec-
tive and the gradient

• NedGradientComputer : Calculates the gradient. An instance of Ned-
GradientComputer gradient compute has to be supplied to the optimizer
during its instantiation.

2.2 Kernel

Implementation of the Gaussian Kernel to handle the sparse feature represen-
tation.

2



2.3 Neddata

Framework for representation and handling of the sparse features.

• DataSetInfo : Stores standard facts about the dataset (Number of classes,
class proportions etc)

• Feature : Represents a feature, consisting of an id and a value

• NedRow : A row consists of a true label followed by a list of features

• NedDataReader : Returns a list of NedRows with DataSetInfo filled in

2.4 Finding Parameters

We use the gaussian kernel to determine similarity between two instances.

K(x1, x2) = exp−γ∗||x1−x2||2 (1)

Where x1 and x2 are sparse representations of the features. The only pa-
rameter to be supplied is gamma. We find the gamma by using 5 fold cross
validation on the training data.

3 The case of impossible ratios

Consider the case where we have 10 unlabeled instances. In such a setting,
we cannot have class ratios with one of the elements set to 0.99 (9.9 elements
belonging to a class is not possible!). In fact, for the current case, any class
proportion in which any of the elements takes a value which when multiplied
by 10 does not yield an integer is impossible.

Although it is easy to see that not every class proportion is possible given
the unlabeled dataset, yet the mmd formulation does not consider this fact
right now. This may lead to errors, since we are looking for the solution in
the complete Rn space where we must be looking in only a proper subset of it.
Intuitively, we need to add the following constraint to the mmd objective.

Let |U | be the number of elements in the unlabeled test set. For any
element θi of then (unknown) class proportion vector, θi ∗ |U | should
be an integer.

4 Modified optimization objective

The current mmd objective can be seen as an approximation to the following
optimization objective.

Given an unlabeled dataset U , find the values of ni such that

Σc
ini = N (2)

where N is the total number of unlabeled instances, c is the number of classes
and ni is the number of instances belonging to the ith class. Clearly, each of the
ni needs to be an integer. Dividing the objective above by N on both sides and
rewriting ni/N as θi gives us the current optimization objective. The problem

3



is that once we do that, there is no way to restrict θi to only those values that
are legal, i.e. fractions ni/N where ni <= N .

As an extension to the current work, we can use an IP solver to obtain the
required values.

5 Rounding the fractions to obtain the “correct’
ratios

A hack to convert the ratios obtained via mmd to one of the possible ratios is
as follows. We first multiply each element of the ratio vector by the number
of unlabeled instances. Each entry is then rounded and finally normalized to
obtained the new ratio.

This boils down to the following matlab operation :

r′ = round(r ∗ |U |)/sum(round(r ∗ |U |)) (3)

Where r′ are the rounded proportion vector, r is the original proportion
vector and |U | is the number of instances in the unlabeled dataset.

6 Results

We compare the ratio vectors obtained from the different methods. To quantify
the difference between two ratio vectors, we use the L1 norm.

l1(x1, x2) = Σn
i=0|x1i − x2i| (4)

Method L1 Norm
SVM 0.20482
STRUCT LEARN 0.22892
MMD 0.5561

We use 3 different plots to visualize the difference between true and obtained
ratios.

• Dispersion Plot Let k be the total number of elements in the ratio
vector. Let true be the true ratio vector and let model be the obtained
ratio vector. Define

I = [1, 2, ..., k] (5)

model′i =
modeli
truei

∗ i ∀i ∈ I (6)

We then plot model′ vs I. In the ideal case, the plot would be a straight
line. Diversion from the straight line thus becomes an indicator of the
degree of error of the ratios obtained.

• Cumulative Frequency Plot Plot of cumulative sum of the obtained
ratios and the original ratios. In the ideal case, the shape of the 2 curves
should match.

• Error Plot We plot the error of the original ratios and the obtained
ratios. In the ideal case, all the points should fall on error = 0 line.

4



6.1 Plots

Figure 1: Ratios Obtained via Structured Learning

5



Figure 2: Digression : SVM vs MMD

6



Figure 3: Cumulative Ratio

7



Figure 4: Per Element Error

7 Results for different sets

To test our hypothesis of the rounded ratios, we created 5 different datasets
and trained svm and mmd on them. The results are as shown in table [7].
We note that although svm outperforms mmd approach, there is a consistent
improvement in performance with rounding. L1 denotes the L1 error as defined
above and PC denotes the per class error.

Run SVM L1 SVM L1 PC MMD L1 MMD L1 PC MMD Rounded L1 MMD L1 PC
1 0.13 0.00061 0.577 0.00272 0.553 0.00261
2 0.144 0.00068 0.506 0.00239 0.47669 0.00225
3 0.1083 0.00051 0.54423 0..257 0.49288 0.00232
4 0.14458 0.00068 0.59434 0.00280 0.59036 0.00278
5 0.25301 0.00119 0.58582 0.00276 0.54217 0.00256

Please note that for these datasets, there can be unseen classes in
the test set

8



8 Error Analysis

• Kernel Selection Experiments with multiclass datasets have earlier shown
that mmd is highly sensitive to kernel selection. The earlier method of
cross validation by fixing class proportions cannot work in the current
setting because of lack of the training data. We thus use 5 fold cross val-
idation. Improper γ learning can be a major source of error for the mmd
methods.

• Lack of training data The training data had 4.5 mentions per entity on
average. These instances may not be a good representative of an average
mention for the candidate.

9 Conclusions

• Restricting thetas As mentioned, the search space for the θs can be
restricted to a great extent by adding constraints to ensure that only pos-
sible values of the θs are considered while coming up with the best. This
will complicate the existing mmd formulation, but our results have consis-
tently indicated that the results will greatly benefit from such additional
constraints.

• Clustering Entities for disjoint occurrence statistics learning Can
we drive around the problem of dealing with large number of classes by
just finding the ratios for each set of disambiguations? For example, can
we find the distribution of all the different Michael Jordans on the web by
collecting all the mentions that refer to one of these?

Though the idea looks intuitive, there are multiple challenges involved.
First of all, can we even create such disjoint subsets of mentions? Even if
we can, how will we ensure that test set will have mentions that only have
candidates from the set of Michael Jordans?

• Cross validation The existing method of obtaining γ via cross validation
depends on varying the class proportions. This method cannot be applied
to the case in hand because there aren’t enough instances per class. To
add to the problem, the number of classes is also very large.

9


