
Analysis of a Convex Formulation for Distant Supervision and

Fitting a Custom Kernel

Aman Madaan & Suvadeep Hajra

Supervised by: Prof. Ganesh Ramakrishnan
Department of CSE, IIT Bombay

April 2015

Abstract

We present a detailed analysis of the convex formulation presented in Grave 2014. We then present a
novel way to use a polynomial kernel with the existing setup while maintaining tractability which beats
the original implementation on the AUC metric. We conclude by proposing another possible way of using
custom kernels using singular value decomposition.

1 Introduction

The convex formulation presented by Grave uses linear kernel. An obvious possible improvement of the
existing methods is using different kernels, like the polynomial kernel or one of the kernels used in Culotta
and Sorensen [2004], Bunescu and Mooney [2005] or Zelenko et al. [2003]. However, in NLP applications,
the feature space is huge (order of million features is very common) and thus naively calculating the
kernel matrix is not feasible.

We propose a formulation based on the insight that features that are very common may not encode
a lot of information about any particular relation, and features that are rare may be very esoteric to be
of any use. We thus prune the features and then project them to a feature space where a kernel would
have mapped them. We present strength of this method by using the polynomial kernel as a proof of
concept.

We follow the notations and the terminology used by Grave throughout the paper.

2 Analysis

2.1 Derivation of the primal problem

Following Bach and Harchaoui, Grave et al. uses linear classifier W ∈ RD×(K+1), the squared loss and
the squared l2-norm as the regularizer. Thus, their initial formulation of the primal problem becomes:

min
Y,W

1

2
||Y −XW||2F +

λ

2
||W||2F , (1)

s.t. Y ∈ {0, 1}N×(K+1),

Y1 = 1,

(EY) ◦ S ≥ R.

where X ∈ RN×D be the feature matrix representing the relation mention candidates. The closed form
solution of the matrix W is given by

W = (XTX + λID)−1XTY (2)

1

Putting this value of W into the objective function of the optimization problem (1), we get the objective
function as

F (Y) =
1

2
tr(YT (IN −X(XTX + λID)−1XT)Y). (3)

Applying the Woodbury matrix identity

(A+ UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1

by taking A = IN , U = X, V = XT and C−1 = λID, we get

IN −X(XTX + λID)−1XT = (XXT + λIN)−1.

Applying this identity in Eq. (3) and relaxing the constraints Y ∈ {0, 1}N×(K+1) into Y ∈ [0, 1]N×(K+1),
the following convex quadratic problem is obtained:

min
Y

1

2
tr(YT (XXT + λIN)−1Y),

s.t. Y ≥ 0,

Y1 = 1,

(EY) ◦ S ≥ R.

Since the inequality constraints might not be feasible, the authors have added the penalized slack variables
ξ ∈ RI×(K+1) and obtained the final primal problem:

min
Y,ξ

1

2
tr(YT (XXT + λIN)−1Y) + µ||ξ||1,

s.t. Y ≥ 0, ξ ≥ 0,

Y1 = 1,

(EY) ◦ S ≥ R− ξ.

The following section describes the dual formulation of the above convex problem.

2.2 Derivation of the dual formulation

By introducing the dual variables Λ ∈ RI×(K+1), Σ ∈ RN×(K+1), Ω ∈ RI×(K+1) and ν ∈ RN , such that
Λ ≥ 0, Σ ≥ 0 and Ω ≥ 0, the Lagrangian of the primal problem can be given by

L(Y, ξ,Λ,Σ,Ω, ν) =
1

2
tr
(

YT (XXT + λIN)−1Y
)

+ µ
∑
i,k

ξik − tr
(

ΛT ((EY) ◦ S− R + ξ)
)
− tr

(
ΣTY

)
−tr

(
ΩT ξ

)
− νT (Y1− 1) .

(4)

To obtain the dual function, we need to differentiate the Lagrangian with respect to the primal variables
Y and ξ. First differentiating with respect to ξik and setting it to zero, we get

δL

δξik
= µ− Λik − Ωik = 0. (5)

Applying this equality into Eq. (4), we get the modified Lagrangian,

L̄(Y,Λ,Σ,Ω, ν) =
1

2
tr
(

YT (XXT + λIN)−1Y
)
− tr

(
ΛT ((EY) ◦ S− R)

)
− tr

(
ΣTY

)
− νT (Y1− 1)

=
1

2
tr
(

YT (XXT + λIN)−1Y
)
− tr

(
(Λ ◦ S)TEY)

)
− tr

(
ΣTY

)
− tr(1νTY) + tr(ΛTR) + νT 1.

(6)

Differentiating L̄ with respect to Y and setting it ot zero, we get

OYL̄ = (XXT + λIN)−1Y − ET (Λ ◦ S)− Σ− ν1T = 0. (7)

2

Rearranging Eq. (7), we get

Y = (XXT + λIN)(ET (Λ ◦ S) + Σ + ν1T). (8)

Putting the optimal value of Y in Eq. (6), we get the dual function as

L∗(Λ,Σ,Ω, ν) = −1

2
tr
(

ZTQZ
)

+ tr
(

ΛTR
)

+ νT 1. (9)

where

Q = (XXT + λIN),

Z = ET (S ◦ Λ) + Σ + ν1T .

Thus the dual problem can be given by

max
Λ,Σ,ν

− 1

2
tr
(

ZTQZ
)

+ tr
(

ΛTR
)

+ νT 1

s.t. Λik ≥ 0, Σnk ≥ 0, Ωik ≥ 0, (10)

µ− Λik − Ωik = 0, ∀i, n, k.

2.3 Duality Gap

The primal problem is the usual least squares which is known to have zero duality gap.

2.4 Solving the Objective

The objective is solved using projected gradient descent. The high level idea is to calculate gradient and
then project it with respect to the constraints, so that we stay in the feasibility region while minimizing
the objective.

3 An Intuitive Interpretation of the Dual

In this section, we present an intuitive interpretation of the dual objective function. The dual function
is produced again for reference as follows:

max
Λ,Σ,ν

− 1

2
tr
(

ZTQZ
)

+ tr
(

ΛTR
)

+ νT 1

s.t. Λik ≥ 0, Σnk ≥ 0, Ωik ≥ 0, (11)

µ− Λik − Ωik = 0, ∀i, n, k.

The intuition behind the dual is best explained by the following equivalent problem:

min
Λ,Σ,ν

1

2
tr
(

ZTQZ
)
− tr

(
ΛTR

)
− νT 1

s.t. Λik ≥ 0, Σnk ≥ 0, Ωik ≥ 0, (12)

µ− Λik − Ωik = 0, ∀i, n, k.

The first term: 1
2
tr
(
ZTQZ

)
is made up of the matrices E, a matrix that notes which entity pairs

have which mentions, and S, a matrix that that has a 1 for every entity pair-relation that exists in the
knowledge base and a −1 for the entity pair-relations that do not exist in the knowledge base.Thus, it is
like the relation matrix that penalizes mistakes.

Q is a matrix that is made up of XTX, the input. In some sense thus, the quadratic is the information
about the knowledge that is contained in the data about the different relations.

The second term: tr
(
ΛTR

)
is just a matrix that encodes the knowledge base.

With these explanations, we can again look at equation 12 and note that we just want to minimize
the difference between our knowledge of the world, and what the data encodes

3

4 Using a custom kernel

4.1 Why is using a custom kernel difficult?

Given the analysis above, we see that the final desideratum, the Y matrix, as well as the intermediate
gradient steps depend on XTX, which is of size N x N , where N is the number of instances. It is standard
in the distant supervision world to have the number of instances to the order of millions, making direct
computation and storage of the kernel matrix infeasible.

4.2 Exploiting Sparsity for Efficient Kernel Calculation

Grave works around the problem of having to compute the complete kernel matrix by using the following
facts:

• The use of Linear Kernel

• The average number of features per instance is much less than the total number of instances

5 Custom Kernel Plugin using Feature Pruning

We start by pruning features appear in all the instances, and those that appear rarely. This approach
is already explored in (Goldberg and Elhadad [2008]). The intuition comes from the linguistic nature of
the problem; words, phrases and sentence structure that is present across the relations may not help us
in learning anything peculiar about a particular relation, which is what we want.

Throwing away some features helps in reducing the width of our instance matrix, which is going to
be useful as discussed below.

Algorithm 1 Featuring Pruning and Projection

1: Given X, min, max.
2: Remove all the features from X that appear more than max number of times and less than min number

of times, let the new matrix be X’.
3: For all Rows x′ of X ′, replace x’ by a polynomial extension of x’, obtained by retaining all the original

terms, plus the pair wise product.
4: Use Grave with X ′

6 Experiments

6.1 Polynomial Kernel via Feature Pruning

We discuss methodology and results by adopting only the feature pruning method as discussed in sec-
tion[5]. We try different pruning thresholds and record the completion time and the Area under the
curve for all the configuration as discussed in ??.

6.2 Results

Table 1 shows the AUC and time of completion for different configurations. We note that pruning features
that appear less than 5 times, and more than 10000 times beats the standard version on the AUC.

Figure 1 shows the precision recall curves for different configurations, and Figure 2 shows the precision
recall curves for the top 4 configurations. From figure 2, we note that the configuration result3 5 10000.tsv
beats the base implementation consistently for half the recall range, and also in the overall AUC.

Figure 3a shows that the value of the objective function decreases rapidly as the number of iterations
increases. When the number of iterations is sufficiently large, the objective function almost converges
and the rate of decrease in its value with the increase in the number of iterations becomes almost zero.
Figure 3b plots the cumulative time taken to solve the dual problem as the number of iterations increases.
From the figure we see that the elapsed time is almost linear with the number of iterations.

4

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

original.tsv

result3_10_100000.tsv

result3_10_10000.tsv

result3_10_1000.tsv

result3_10_100.tsv

result3_20_100000.tsv

result3_20_10000.tsv

result3_20_1000.tsv

result3_20_100.tsv

result3_5_100000.tsv

result3_5_10000.tsv

result3_5_1000.tsv

result3_5_100.tsv

Figure 1: Precision Recall Curve for different Pruning Configurations

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Recall

P
re

c
is

io
n

original.tsv

result3_20_100000.tsv

result3_20_10000.tsv

result3_5_100000.tsv

result3_5_10000.tsv

Figure 2: Precision Recall Curve for the top 4 Pruning Configurations

5

Min Pruning Cutoff Max Pruning Cutoff AUC Time
20 100 0.03311205 211.513000
10 100 0.03736918 283.580000
5 100 0.04061753 386.337000
10 1000 0.04444769 633.979000
10 100000 0.04456001 1369.473000
20 1000 0.04935819 500.905000
5 1000 0.05199495 801.007000
10 10000 0.06930104 1131.839000
20 10000 0.07201145 965.479000
5 100000 0.08066457 1648.713000
No Pruning No Pruning 0.09428642 551.461000
20 100000 0.09827496 1151.805000
5 10000 0.1033964 1365.037000

Table 1: Results from using Polynomial Kernel via Feature Pruning

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 100 200 300 400 500 600 700 800 900 1000

V
a
lu

e
 o

f
th

e
 O

b
je

c
ti
v
e
 F

u
n
c
ti
o
n

Iteration

(a) The value of the objective function of the dual opti-
mization problem vs. number of iteration.

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

E
la

s
p
e
d
 T

im
e

Iteration

(b) Elapsed time vs. number of iteration.

Figure 3: The left figure plots how the value of the objective function changes with the increase in number
of iterations. The right figure plots the cumulative amounts of time taken to solve the dual optimization
problem as the number of iteration increases.

7 Custom Kernel Plugin using Singular Value Decomposi-
tion

Let X be the original sparse feature matrix, of dimension N x D where N is the total number of instances
and D is the maximum number of features fired for any instance.

Let K(xi, xj) be the custom kernel that we want to plugin instead of the existing linear kernel. Then
we can find a mapping φ : xi → φ(xi) such that K(xi, xj) = φ(xi)

Tφ(xj). Though for some kernels such
as Gaussian kernel, φ(xi) can be an infinite dimensional vector, we restrict our focus to only those kernels
for which the dimension of the projected feature space � N . There are two ways for getting the feature
mapping φ from the the kernel K. In one approach, we construct the kernel matrix K of dimension N×N
such that Kij = K(xi, xj). Then, we decompose K as ΦΦT where Φ is a N × D1 matrix. Clearly, ith

row of Φ represents φ(xi). However, since this method needs to compute the N ×N dimensional kernel
matrix, it is impractical when N is very large. As an alternative, we can find φ analytically from the
kernel function K and construct the matrix Φ. For computational efficiency, the column dimension of Φ
can be reduce further using Singular Value Decomposition (SVD). This approach is illustrated below:

6

1. Calculate a matrix Φ of dimensions N x F ′ where the ith row represents φ(xi).

2. Perform a SVD of the matrix Φ, say

Φ = V ∗ Σ ∗ UT (13)

3. Construct the F -rank approximation of Φ as

Φ′ = Φ ∗ U(:,1:F) (14)

We can now run the code using the new Φ′. The matlab code for the above method is shown in
algorithm below.

Algorithm 2 Matlab code

1: load data file
2: sparseMatrix = spconvert(data file);
3: [U D V] = svds(sparseMatrix, F);
4: projData = sparseNatrix * V;

We note that we cannot perform the feature pruning of the type discussed earlier on Φ′ because the
nature of the features may not be obvious in this case.

References

R. C. Bunescu and R. J. Mooney. A shortest path dependency kernel for relation extraction. In Proceed-
ings of the conference on Human Language Technology and Empirical Methods in Natural Language
Processing, pages 724–731. Association for Computational Linguistics, 2005.

A. Culotta and J. Sorensen. Dependency tree kernels for relation extraction. In Proceedings of the 42nd
Annual Meeting on Association for Computational Linguistics, page 423. Association for Computa-
tional Linguistics, 2004.

Y. Goldberg and M. Elhadad. splitsvm: fast, space-efficient, non-heuristic, polynomial kernel computa-
tion for nlp applications. In Proceedings of the 46th Annual Meeting of the Association for Compu-
tational Linguistics on Human Language Technologies: Short Papers, pages 237–240. Association for
Computational Linguistics, 2008.

E. Grave. A convex relaxation for weakly supervised relation extraction.

D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation extraction. The Journal of Machine
Learning Research, 3:1083–1106, 2003.

7

	Introduction
	Analysis
	Derivation of the primal problem
	Derivation of the dual formulation
	Duality Gap
	Solving the Objective

	An Intuitive Interpretation of the Dual
	Using a custom kernel
	Why is using a custom kernel difficult?
	Exploiting Sparsity for Efficient Kernel Calculation

	Custom Kernel Plugin using Feature Pruning
	Experiments
	Polynomial Kernel via Feature Pruning
	Results

	Custom Kernel Plugin using Singular Value Decomposition

